• Title/Summary/Keyword: Related keyword

Search Result 696, Processing Time 0.024 seconds

Exploration of Hydrogen Research Trends through Social Network Analysis (연구 논문 네트워크 분석을 이용한 수소 연구 동향)

  • KIM, HYEA-KYEONG;CHOI, ILYOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.318-329
    • /
    • 2022
  • This study analyzed keyword networks and Author's Affiliation networks of hydrogen-related papers published in Korea Citation Index (KCI) journals from 2016 to 2020. The study investigated co-occurrence patterns of institutions over time to examine collaboration trends of hydrogen scholars. The study also conducted frequency analysis of keyword networks to identify key topics and visualized keyword networks to explore topic trends. The result showed Collaborative research between institutions has not yet been extensively expanded. However, collaboration trends were much more pronounced with local universities. Keyword network analysis exhibited continuing diversification of topics in hydrogen research of Korea. In addition centrality analysis found hydrogen research mostly deals with multi-disciplinary and complex aspects like hydrogen production, transportation, and public policy.

Analysis of Students Experience related of Nursing Management Clinical Practice: Text Network Analysis Method (Text Network Analysis를 이용한 간호관리학 실습경험 분석)

  • Kang, Kyeong Hwa;Yu, Soyoung
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.22 no.1
    • /
    • pp.80-90
    • /
    • 2016
  • Purpose: The purpose of this study was to analyze students experiences during clinical practice in nursing management. Methods: Assessing through computerized databases, self-reflection reports of 57 students were analyzed. Text network analysis was applied to examine the research. The keywords from each student's reports were extracted by using the programs, KrKwic and NetMiner. Results: The results of the keyword network analysis of what students learned in the nursing process included 27 words. The keyword network analysis of what students learned from the problem solving process included 23 words and the keyword network analysis of improvements in Clinical Practice of Nursing included 31 words. Conclusion: Studies related to clinical practice have been increasing, and themes of the studies have also become broader. Further research is required to investigate factors affecting clinical practice specifically in nursing management. Further comparative studies are necessary to define differences in clinical practice systems related to improving nursing students competency.

Unstructured Data Processing Using Keyword-Based Topic-Oriented Analysis (키워드 기반 주제중심 분석을 이용한 비정형데이터 처리)

  • Ko, Myung-Sook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.521-526
    • /
    • 2017
  • Data format of Big data is diverse and vast, and its generation speed is very fast, requiring new management and analysis methods, not traditional data processing methods. Textual mining techniques can be used to extract useful information from unstructured text written in human language in online documents on social networks. Identifying trends in the message of politics, economy, and culture left behind in social media is a factor in understanding what topics they are interested in. In this study, text mining was performed on online news related to a given keyword using topic - oriented analysis technique. We use Latent Dirichiet Allocation (LDA) to extract information from web documents and analyze which subjects are interested in a given keyword, and which topics are related to which core values are related.

A Study on the Research Trends of Smart Learning (스마트교육 연구동향에 대한 분석 연구)

  • Kim, Hyang-Hwa;Oh, Dong-In;Heo, Gyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.1
    • /
    • pp.156-165
    • /
    • 2014
  • The purpose of this study was to find research trends of smart learning. For this, we identified the research's characteristics such as the subject or keyword of research, method, data collection, and statistical analysis method. The 2,865 articles published from 1995 to 2013 were gathered from five Korean academic journals related to smart learning. Among them, research keyword, areas, research method, data collection method, and statistical analysis method were analyzed on 596 papers. The findings of this study were as follows: (a) Smart learning papers such keyword likes u-learning, m-learning, and smart-learning were emerging after 2006. Smart learning papers with ICT related topics were highly increased after 2000, but they were decreased after 2006. Smart learning papers with e-learning related keywords were steadily increased after 2000 through 2013. (b) The research field of deign had the highest portion in smart learning research, but managing had the lowest portion. (c) Development was mainly used as a research method. Both questionnaire and experiment were mainly used for collecting data methods. T-test and frequency analysis were mainly used as statistical analysis methods.

Research Trend on Internet of Things and Smart City Using Keyword Fequency and Centrality Analysis : Focusing on United States, Japan, South Korea (키워드 빈도와 중심성 분석을 이용한 사물인터넷 및 스마트 시티 연구 동향: 미국·일본·한국을 중심으로)

  • Lee, Taekkyeun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.3
    • /
    • pp.9-23
    • /
    • 2022
  • This study aims to examine research trends on the Internet of Things and smart city based on papers from the United States, Japan, and Korea. We collected 7113 papers related to the Internet of Things and smart city published from 2016 to 2021 in Elsevier's Scopus. Keyword frequency and centrality analysis were performed based on the abstracts of the collected papers. We found keywords with high frequency of appearance by calculating keyword frequency and identified central research keywords through the centrality analysis by country. As a result of the analysis, research on security, machine learning, and edge computing related to the Internet of Things and smart city were the most central and highly mediating research conducted in each country. As an implication, studies related to deep learning, cybersecurity, and edge computing in Korea have lower degree centrality and betweenness centrality compared to the United States and Japan. To solve the problem it is necessary to combine these studies with various fields. The future research direction is to analyze research trends on the Internet of Things and smart city in various regions such as Europe and China.

A Keyword Network Analysis on Research Trends in the Area of Health Insurance (건강보험 연구동향에 대한 키워드 네트워크 분석)

  • Lee, Su Jung;Lee, Sun-Hee
    • Health Policy and Management
    • /
    • v.31 no.3
    • /
    • pp.335-343
    • /
    • 2021
  • Background: The purpose of this study was to extract the major areas of interest in health insurance research in Korea, and infer policy agendas related to health insurance by analyzing research keywords. Methods: For this study, 2,590 articles were selected from among 7,459 academic papers related to health insurance published between January 1987 and December 2018, which were looked up using the Research Information Sharing Service (RISS). Keyword extraction and keyword network analysis were performed using the KrKwic, KrTitle, and UCINET software. Results: First, the number of studies in the area of health insurance continued to increase in all government terms, and it was not until after the 2000s that the subjects of health insurance researches were diversified. Second, degree centrality showed that 'medical expenditure' and 'medical utilization' were consistently high-ranking keywords regardless of the government in power. Aging and long-term care insurance-related keywords were ranked higher in the Lee Myung-bak government, Park Geun-hye government, and Moon Jae-in government. Third, betweenness centrality showed the same high ranking in key topics such as medical expenditure and medical utilization, while the ranking of key keywords differed depending on the interests and characteristics of each government policy. Conclusion: We confirm that health insurance as a research topic has been the main theme in Korean health care research fields. Research keywords extracted from articles also corresponded to the main health policies promoted during each government period. Efforts to systematically investigate policy megatrends are needed to plan adaptive future policies.

An Analysis of the Experience of Users of National Ecological and Cultural Exploration Routes Using Big Data - A Focus on the Buan Masil Road and Gunsan Gubul Road - (빅데이터를 활용한 국가생태문화탐방로 이용자의 경험분석 - 부안 마실길과 군산 구불길을 대상으로 -)

  • Lee, Hyun-Jung;An, Byung-Chul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.6
    • /
    • pp.151-166
    • /
    • 2020
  • Various experience keywords were derived through text mining analysis of two National Ecological and Cultural Exploration Routes. The results of this study were drawn as follows: The interaction between the experience keywords was analyzed by the degree centrality, closeness centrality, and betweenness centrality value calculated through the centrality analysis of the research site experience keywords. First, In the text mining analysis, 'walking' appeared as the top keyword in the I, II, and III periods of the two target areas. The keywords related to the stay type of "rental cottage" and "recreational forest" were derived for Masil Road in relation to accommodation facilities. However, the keywords related to the accommodation were not derived in Gubul Road. Second, as a result of the centrality analysis, the degree centrality of the keywords "walking", "sea", "look", "salt flats" of Masil Road and "walking", "lake" and "park" of Gubul Road was high. The keywords located at the center are "walking" and "sea" in the Masil Road, and "walking" in the Gubul Road. As an influential keyword, Masil Road is "experience" and Gubul Road is "history". Third, According to the results of the analysis, the keywords that appeared at the top of the Gubul Road are derived from the keywords related to the 1 ~ 8 course, and it is judged that the visitors are visiting the 1 ~ 8 course trail evenly. However, the Gubul Road only appears in the top keyword only for a few courses. Through this, it seems that three courses are intensively visited as the main course of 6 Gubul Road, 6-1 Gubul Road, and 8 Gubul Road.

An Efficient Keyword Search Method on RDF Data (RDF 데이타에 대한 효율적인 검색 기법)

  • Kim, Jin-Ha;Song, In-Chul;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.35 no.6
    • /
    • pp.495-504
    • /
    • 2008
  • Recently, there has been much work on supporting keyword search not only for text documents, but a]so for structured data such as relational data, XML data, and RDF data. In this paper, we propose an efficient keyword search method for RDF data. The proposed method first groups related nodes and edges in RDF data graphs to reduce data sizes for efficient keyword search and to allow relevant information to be returned together in the query answers. The proposed method also utilizes the semantics in RDF data to measure the relevancy of nodes and edges with respect to keywords for search result ranking. The experimental results based on real RDF data show that the proposed method reduces RDF data about in half and is at most 5 times faster than the previous methods.

Automatic In-Text Keyword Tagging based on Information Retrieval

  • Kim, Jin-Suk;Jin, Du-Seok;Kim, Kwang-Young;Choe, Ho-Seop
    • Journal of Information Processing Systems
    • /
    • v.5 no.3
    • /
    • pp.159-166
    • /
    • 2009
  • As shown in Wikipedia, tagging or cross-linking through major keywords in a document collection improves not only the readability of documents but also responsive and adaptive navigation among related documents. In recent years, the Semantic Web has increased the importance of social tagging as a key feature of the Web 2.0 and, as its crucial phenotype, Tag Cloud has emerged to the public. In this paper we provide an efficient method of automated in-text keyword tagging based on large-scale controlled term collection or keyword dictionary, where the computational complexity of O(mN) - if a pattern matching algorithm is used - can be reduced to O(mlogN) - if an Information Retrieval technique is adopted - while m is the length of target document and N is the total number of candidate terms to be tagged. The result shows that automatic in-text tagging with keywords filtered by Information Retrieval speeds up to about 6 $\sim$ 40 times compared with the fastest pattern matching algorithm.

Factors affecting the number of citations in papers published in the Journal of Korean Society of Dental Hygiene (한국치위생학회지 게재논문의 피인용수에 영향을 미친 요인)

  • Jeon, Se-Jeong
    • Journal of Korean society of Dental Hygiene
    • /
    • v.21 no.5
    • /
    • pp.639-644
    • /
    • 2021
  • Objectives: The purpose of this study was to analyze the factors that affected the number of citations for articles published in the Journal of Korean Society of Dental Hygiene based on previous studies. Methods: Information on papers including the number of citations was collected using a web crawling technique. The effect of the number of author keywords, the number of Medical Subject Headings (MeSH) keywords, MeSH match rate, abstract word count and keyword-abstract ratio on the number of citations was analyzed by multiple regression analysis. Results: The use of the MeSH keyword did not have a significant effect on the number of citations. Among the other factors, only the keyword-abstract ratio was statistically significant. Conclusions: Select a topic of constant interest in the field, write the title in detail using colons or asterisks if necessary, and do not repeat the words used in the title in keywords. Select specific keywords deeply related to the topic. In particular, choice words or phrases that are frequently used in the abstract. If the MeSH keyword selection contradicts the previous strategies, boldly give up the MeSH keyword.