• Title/Summary/Keyword: Reinitialization

Search Result 14, Processing Time 0.021 seconds

Multi-Objective Micro-Genetic Algorithm for Multicast Routing (멀티캐스트 라우팅을 위한 다목적 마이크로-유전자 알고리즘)

  • Jun, Sung-Hwa;Han, Chi-Geun
    • IE interfaces
    • /
    • v.20 no.4
    • /
    • pp.504-514
    • /
    • 2007
  • The multicast routing problem lies in the composition of a multicast routing tree including a source node and multiple destinations. There is a trade-off relationship between cost and delay, and the multicast routing problem of optimizing these two conditions at the same time is a difficult problem to solve and it belongs to a multi-objective optimization problem (MOOP). A multi-objective genetic algorithm (MOGA) is efficient to solve MOOP. A micro-genetic algorithm(${\mu}GA$) is a genetic algorithm with a very small population and a reinitialization process, and it is faster than a simple genetic algorithm (SGA). We propose a multi-objective micro-genetic algorithm (MO${\mu}GA$) that combines a MOGA and a ${\mu}GA$ to find optimal solutions (Pareto optimal solutions) of multicast routing problems. Computational results of a MO${\mu}GA$ show fast convergence and give better solutions for the same amount of computation than a MOGA.

Solving Time-dependent Schrödinger Equation Using Gaussian Wave Packet Dynamics

  • Lee, Min-Ho;Byun, Chang Woo;Choi, Nark Nyul;Kim, Dae-Soung
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1269-1278
    • /
    • 2018
  • Using the thawed Gaussian wave packets [E. J. Heller, J. Chem. Phys. 62, 1544 (1975)] and the adaptive reinitialization technique employing the frame operator [L. M. Andersson et al., J. Phys. A: Math. Gen. 35, 7787 (2002)], a trajectory-based Gaussian wave packet method is introduced that can be applied to scattering and time-dependent problems. This method does not require either the numerical multidimensional integrals for potential operators or the inversion of nearly-singular matrices representing the overlap of overcomplete Gaussian basis functions. We demonstrate a possibility that the method can be a promising candidate for the time-dependent $Schr{\ddot{o}}dinger$ equation solver by applying to tunneling, high-order harmonic generation, and above-threshold ionization problems in one-dimensional model systems. Although the efficiency of the method is confirmed in one-dimensional systems, it can be easily extended to higher dimensional systems.

An Embedded Timing Loss Detector for Robust Data Transmission (데이터 전송을 위한 타이밍 손실 검출기)

  • 이용환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.9
    • /
    • pp.1404-1411
    • /
    • 1993
  • Unlike voice communication, data transmission, can be seriously affected by transient channel impairments. In some cases, timing synchronization between the transmitter and the receiver may not be recovered in the presence of these kinds of impairments without a forced reinitialization process. Therefore, it is highly desirable for data communication equipment to have an efficient timing loss detector for robust recovery. In this paper, one such detector is proposed for data transceivers haying a secondary channel embedded in the main channel. A known sequence multiplexed with the secondary channel data is repeatedly sent through the embedded secondary channel. For continuous watch-dog like operation, the detection is sequentially performed based on a modified up/down counter scheme. The performance of the proposed detector is analytically evaluated In closed form.

  • PDF

Verification of Mechanical Leaf Gap Error and VMAT Dose Distribution on Varian VitalBeamTM Linear Accelerator

  • Kim, Myeong Soo;Choi, Chang Heon;An, Hyun Joon;Son, Jae Man;Park, So-Yeon
    • Progress in Medical Physics
    • /
    • v.29 no.2
    • /
    • pp.66-72
    • /
    • 2018
  • The proper position of a multi-leaf collimator (MLC) is essential for the quality of intensity-modulated radiation therapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) dose delivery. Task Group (TG) 142 provides a quality assurance (QA) procedure for MLC position. Our study investigated the QA validation of the mechanical leaf gap measurement and the maintenance procedure. Two $VitalBeam^{TM}$ systems were evaluated to validate the acceptance of an MLC position. The dosimetric leaf gaps (DLGs) were measured for 6 MV, 6 MVFFF, 10 MV, and 15 MV photon beams. A solid water phantom was irradiated using $10{\times}10cm^2$ field size at source-to-surface distance (SSD) of 90 cm and depth of 10 cm. The portal dose image prediction (PDIP) calculation was implemented on a treatment planning system (TPS) called $Eclipse^{TM}$. A total of 20 VMAT plans were used to confirm the accuracy of dose distribution measured by an electronic portal imaging device (EPID) and those predicted by VMAT plans. The measured leaf gaps were 0.30 mm and 0.35 mm for VitalBeam 1 and 2, respectively. The DLG values decreased by an average of 6.9% and 5.9% after mechanical MLC adjustment. Although the passing rates increased slightly, by 1.5% (relative) and 1.2% (absolute) in arc 1, the average passing rates were still within the good dose delivery level (>95%). Our study shows the existence of a mechanical leaf gap error caused by a degenerated MLC motor. This can be recovered by reinitialization of MLC position on the machine control panel. Consequently, the QA procedure should be performed regularly to protect the MLC system.