• Title/Summary/Keyword: Reinfored retaining wall

Search Result 2, Processing Time 0.02 seconds

A Study of Connection Stability for Reinforced Retaining Wall Constructed with Soilbag with Varying Connection Strength (연결강도 변화에 의한 Soilbag 보강토 옹벽 연결부의 안정성 평가)

  • Lee, Sang-Moon;Choi, Changho;Shin, Eun-Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.101-107
    • /
    • 2013
  • Environmental-friendly and economical construction are the recent issues for civil structures and soilbag as facing wall is widely used for cut-slope remediation projects. However, the stability of structures is an important issue for the use of environmental-friendly and economical materials. In order to understand the stability of soilbag reinforced retaining wall, tensile resistance, rupture, tensile strength, and internal/external safety factor of the wall were analyzed with MSEW program and the results were compared to the safety factor of block-type reinforced walls. The stability of retaining wall was analyzed with reduction coefficients of connection strength to check the connection stability. Because it is possible to move between soilbag and geogrid connector for soilbag retaining wall, the safety factor of the wall was analyzed with different inclination angles of soilbag. The analysis result shows that the connection strength and internal/external stability of soilbag reinforced wall satisfy the stability criteria.

Effect of preloading on residual deformation of Back-To-Back reinfored wall (선행하중작용시 Back-To-Back(BTB) 보강토 옹벽의 거동 특성)

  • Kim, Sun-Bin;Yoo, Chung-Sik;Kim, Jae-Wang;Joo, Sung-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.251-258
    • /
    • 2008
  • The use of reinforced earth walls in permanent structures is getting it's popularity. Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exit concerns over long-term residual deformation when subjected to repeated and/or cyclic loads, during their service period. In this investigation, the effect of preloading in reducing long term residiual deformation of back-to-back reinforced soil wall under sustained and/or repeated loading enviormentment using a series of reduced-scale model tests. It is found that the preloading technique can be an effective means of controlling residual deformations of reinforced soils under varisous loading conditions.

  • PDF