• Title/Summary/Keyword: Reinforcing Agent

Search Result 100, Processing Time 0.028 seconds

Development for Performance Improving Agent of Penetration in Reinforcing Applied on Concrete (콘크리트 침투강화형 성능개선재 개발)

  • 김도겸;고경택;류금성;김방욱;김성욱;이장화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.781-786
    • /
    • 2002
  • We develop the performance improving agent of penetration reinforcing applied on concrete by which main components use compounds of metal alkoxide and silicate(Ti). Also, we investigate on the type and amount of organic solvent which need the hydrolysis and water condensation reaction of Ti. The penetration reinforcing agent developed this study can penetrate deeper than 50mm without relation to concrete strength. Also the performance improving agent composed of the combination of Ti and organic solvent A, improve performance in keeping out or removement of deterioration material. waterproof and strength.

  • PDF

EVALUATION OF A PENETRATION-REINFORCING AGENT TO PREVENT THE AGING OF CONCRETE

  • Cho, Myung-Sug;Noh, Jea-Myoung;Song, Young-Chul
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1127-1134
    • /
    • 2009
  • Concrete has three major properties after a penetration-reinforcing agent is applied on its surface. First, the durability is improved by the sol-gel process of synthesized material from the polycondensation of TEOS (tetra-ethoxyorthosilicate) and acrylate monomer. Second, the capability to absorb impact energy is reinforced through the formation of a soft and flexible layer of organic monomers by Tea (Tetra Ethyl Amin). Third, the capability to prevent deterioration is enhanced by adding isobutyl-orthosilicate and alcohol. The performance and application of an agent developed through the synthesis of organic and inorganic material in an effort to prevent concrete from deterioration and improve the durability of concrete structures were verified in diverse experiments. The results of these experiments showed that the application of the proposed penetration-reinforcing agent has the effect of increasing the compressive strength by filling up the internal pores of concrete with physically and chemically stable compounds after penetrating the concrete. It also improves the durability against the deterioration factors such as salt water damage, carbonation, freezing and thawing, and compound deterioration. Therefore, it is confirmed that the penetration-reinforcing agent is a useful substance for the management and repair of concrete structures.

Construction of Environmentally Friendly Roadbed by Reinforecing Type Soil Solidification Agent (보강형 고화제를 이용한 친환경 도로노반조성 방안)

  • Koh, Yong-Kook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.667-671
    • /
    • 2004
  • The purpose of this paper is to study on the construction of environmentally friendly roadbed by reinforcing type soil solidification agent. The soil amendment agent used in this study is friendly to the environment, and has a function of soil-cement-agent solidification. The soil amendment agent was admixed with reinforced fiber material for enhancement of strength and durability of roadbed. The project of trial field test of roadbed construction with special reinforcing soil treatment agent was performed in Gyunggido on December 2003. A series of field and laboratory experiments including unconfined compressive strength, permeability were carried out to investigate the physical and mechanical characteristics of solidified roadbed treated by this reinforced solidifying agent. The results of this research showed that the roadbed using normal and poor soil could be efficiently constructed by treatment of this reinforcing type solidification agent admixed with fiber material.

  • PDF

A Study on Tracking Degradation Properties of Silicone Rubber due to Reinforcing Agent (보강제 변화에 따른 실리콘 고무의 트래킹 열화 특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.841-846
    • /
    • 2014
  • It found that the maximum temperature of the arc discharge occurred on the Silicone rubber sample significantly decreased with increasing the reinforcing agent. It was confirmed that the current value decreased with increasing the aluminium trihydrate($Al(OH)_3$) and the current value increased with reducing the primary resistance over time. Regarding these results, may be it is because the degradation due to the electro-conductive carbonization was improved and the properties of dielectric breakdown was reduced by the flame retardant reinforcing agent. It found that the electro-conductive carbonized road has not happened by increasing the flame retardant reinforcing agent. Regarding to the arc discharge, this study show that the arc arising near the lower electrode of sample has disappeared.

Characteristics Correlations Between Fiber-Reinforced and Interfacial Adhesion in Carbon fiber reinforced Cement composite Prepared by Slurry Method. (슬러리법에 의한 탄소섬유보강 시멘트복합체의 제조에서 보강섬유와 계면결착제와의 상관특성)

  • Choi, Eung-Kyoo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.3
    • /
    • pp.131-138
    • /
    • 2002
  • The objective of the study is to examine the characteristic correlations between reinforcing carbon fiber and interfacial adhesion agent since the interfacial adhesion strength between reinforcing carbon fiber and matrices is believed to be an essential element influencing the physical properties in carbon fiber reinforced cement composite using slurry method. The integrity of interfacial adhesion between reinforcing fiber and cement not only affects the quality of fiber reinforced cement composite but also influences to a large degree the physical properties of the cement composite when producing carbon fiber reinforced cement composite using slurry method. Having analyzed the physical properties 1.e., water content, tensile strength, flexural strength and flexural toughness of carbon fiber reinforced cement composite specimens, C-PAM(cation polyacrylamide) was determined to be an optimum interfacial adhesion agent. The study has also demonstrated that interfacial adhesion strength varies largely on the content and type of the reinforcing fiber. Judging from magnified view of the tensile shear cross-section using VMS(video microscope system), interfacial adhesion strength between reinforcing fiber and matrices is affected by the type of interfacial adhesion agent. According to the result of the experiments, C-PAM was determined to be an ideal interfacial adhesion agent when using carbon fiber in producing carbon fiber reinforced cement composite with the optimum content of carbon fiber being established.

Evaluation of Penetrating and Reinforcing Agent for Preventing Deterioration of Concrete (표면 침투 보강제에 의한 콘크리트 열화 방지 성능 평가)

  • Cho, Myung-Sug;No, Jae-Myoung;Song, Young-Chul;Kim, Do-Gyum
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.475-482
    • /
    • 2007
  • The property and applicability of the organic-inorganic synthesized penetrating and reinforcing agent, which is developed in order to improve durability of concrete structures and prevent deterioration that may occur as service years increased, are researched with experimental works. TEOS (tetra-ethoxyorthosilicate) and acrylate monomer are synthesized by the solution polycondensation method in order to formulate silicate with sol-gel process and improve durability of concrete. Additional substances such as isobutyl-orthosilicate is supplemented in order to improve the performance of the agent. After the developed organic-inorganic penetrating reinforcing agent penetrates, a flexible impact alleviating layer is formed with organic monomers as well as the agent strengthens concrete by filling up the internal pore of concrete with stable compounds after penetration. Penetrating and reinforcing agent can be applied as an effective life management method because it makes concrete more durable against the aging factors, such as chloride ion, carbonation, freezing-thawing, and compound aging.

Electric Degraded Properties of EP Cable Rubber (EP 케이블 고무의 전기적 열화 특성)

  • Lee, Sung-Ill;Bae, Duck-Kweon;Kim, Sang-Hyeon;Lee, Jong-Pil;Oh, Yong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.516-517
    • /
    • 2008
  • The ethylene-propylene (EP) rubbers mixed with one to one ratio is used as an insulation material in the nuclear power plant. It was investigated the effect of the amount of reinforcing agent. moisture absorption and heat treatment on the Ethylene-Propylene(EP) rubbers. The level of degradation was measured by the amount of discharging and. charging currents. When $\gamma$ rays were radiated on the EP rubbers with more charging material, the amount of discharging and charging currents was depended on the amount of reinforcing agent It was verified that the discharging and charging currents irradiated by $\gamma$ rays were higher than those that was not irradiated.

  • PDF

Evaluation of physical properties of Zn-Al metal coating according to arc metal spray surface treatment method (아크 금속 용사 표면 처리 방법에 따른 Zn-Al 금속 용사 피막의 물리적 특성 평가)

  • Jang, Jong-Min;Kim, Yeung-Kwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.89-90
    • /
    • 2022
  • Arc metal spraying is a widely used method for improving the performance of construction structures such as corrosion resistance and electromagnetic wave shielding. However, when arc metal spraying is applied to a concrete structure, adhesion performance may deteriorate. Therefore, the effect of each surface treatment method on the physical properties between the arc metal spray coating and concrete was reviewed by evaluating the deposition efficiency and adhesion performance according to the arc metal spray surface treatment method (surface reinforcing agent, roughening agent, and sealing agent). As a result, it is suggested as an optimal surface treatment condition to induce non-interface failure by using a roughening agent and to improve the properties of concrete and metal coatings by applying a surface reinforcing agent and sealing agent.

  • PDF

The Application of Natural Hydraulic Lime as a Reinforcing Agent for Mural Paintings in Ancient Tombs (천연 수경성 석회(NHL)를 사용한 고분벽화 벽체 보강제 적용성 연구)

  • Yu, Yeong Gyeong;Lee, Hwa Soo
    • Conservation Science in Museum
    • /
    • v.21
    • /
    • pp.29-40
    • /
    • 2019
  • An experimental study was conducted to test the applicability of natural hydraulic lime (NHL) as a reinforcing agent for the supporting layers of mural paintings in ancient tombs.Drawing upon preceding studies on mural paintings inancient tombs, samples of reinforcing agents for various conditions were prepared using NHL products, and pseudo-samples of the supporting layers of mural paintings were also produced. The samples were cured for 7, 28, and 84 days in a high-humidity condition similar to that of the mural-tomb environment. Physical properties such as dimensional stability and compressive strength were measured for each curing period.The results indicated that the NHL samples had a rapid curing speed and a low contraction ratio and are therefore suitable as reinforcing agents, whereas they showed a poor match in terms of strength compared to the supporting layer,and also low whiteness. The dimensional stability and compressive strength testsrevealedthat an NHL product mixed with a pseudo-sample of a supporting layer provided desirable conditions for reinforcing agent. The findings suggested that different conditions for curing time and strength should be considered for each supporting layer prior to applying NHL as a reinforcing agent for damaged mural paintings in ancient tombs.

Pinning retrofit technique in masonry with application of polymer-cement pastes as bonding agents

  • Shrestha, Kshitij C.;Pareek, Sanjay;Suzuki, Yusuke;Araki, Yoshikazu
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.477-497
    • /
    • 2013
  • This paper reports extensive experimental study done to compare workability and bond strength of five different types of polymer-based bonding agents for reinforcing bars in pinning retrofit. In pinning retrofit, steel pins of 6 to 10 mm diameters are inserted into holes drilled diagonally from mortar joints. This technique is superior to other techniques especially in retrofitting historic masonry constructions because it does not change the appearance of constructions. With an ordinary cement paste as bonding agent, it is very difficult to insert reinforcing bars at larger open times due to poor workability and very thin clearance available. Here, open time represents the time interval between the injection of bonding agent and the insertion of reinforcing bars. Use of polymer-cement paste (PCP), as bonding agent, is proposed in this study, with investigation on workability and bond strengths of various PCPs in brick masonry, at open times up to 10 minutes, which is unavoidable in practice. Corresponding nonlinear finite element models are developed to simulate the experimental observations. From the experimental and analytical study, the Styrene-Butadiene Rubber polymer-cement paste (SBR-PCP) with prior pretreatments of drilled holes showed strong bond with minimum strength variation at larger open times.