• Title/Summary/Keyword: Reinforcement type

Search Result 884, Processing Time 0.029 seconds

Characteristics of Settlement and Scour of Square-Shaped Hybrid Reef according to Placement Types (배치 형태에 따른 사각형 복합 인공어초의 침하 및 세굴 특성)

  • Yun, Daeho;Kim, Yuntae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.1-10
    • /
    • 2017
  • This study carried out several laboratory tests such as water tank settlement test and two-dimensional water flow test to investigate settlement and scour characteristics of a square-shaped hybrid reef which was reinforced with geogrid. In addition, numerical analysis was also performed to find out scour characteristics of the square-shaped hybrid reef with different placement types (type A; straight placement type, type B; zigzag placement type). Laboratory test results indicated that settlement and scouring depth significantly reduced in hybrid reefs reinforced with geogrid, compared with those without reinforcement. Two-dimentional water flow tests and numerical test results also showed that scouring depth and flow velocity of placement type A more decreased than those of type B.

Determination of Nominal Moment of Strengthening Beam with Carbon Fiber Sheets Using Strength Method (강도설계법으로 산정된 탄소섬유시트 보강 철근콘크리트 보의 공칭 휨모멘트)

  • 조백순;정진환;김성도;박대효;이우철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.593-598
    • /
    • 2002
  • Routinely, strength method for the determination of the nominal moment of reinforced concrete beam is assumed to also be suitable for strengthening beams with carbon fiber sheets since typically strengthening beams compromise 98% by volume of reinforced concrete. Flexural capacity of strengthening beam is absolutely dependent upon the type of reinforcement materials, amount of reinforcement, anchoring system, adhesion capacity between reinforcement material and concrete. Therefore, it might be incorrect to use strength method for analysis and design of strengthening beam without considering the differences in the load-deflection curves, mechanism of failure, state of stress distribution, failure strain of the reinforcement. An flexural analysis based on force equilibrium and strain comparability has been developed for strengthening beam. Systematic experimental investigations are compared with analytical results. Then, the adaptation of strength method for strengthening beam have also been discussed.

  • PDF

Confined Effect of Ultra High Strength Reinforced Concrete Tied Columns (초고강도 철근콘크리트 띠철근 기둥의 구속효과)

  • Han, Byum Seok;Shin, Sung Woo;Kim, Tae Soo
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.105-111
    • /
    • 2007
  • As this study investigates the influence about type of transverse reinforcement, spacing of transverse reinforcement(s), volumetric ratios of transverse reinforcement(${\rho}s$) of ultra-high strength concrete columns. It try to offer to resonable basic data of the confined model for the ultra-high concrete of in reinforced concrete columns. Experimental tests with large scaled columns were conducted under concentric axial loads. The ultra-high strength concrete (100MPa) was used. From this test result, it evaluate influence of the strength enhancement and ductility enhancement, important variables about behavior of the confined concrete by confinement of ultra-high strength reinforced concrete.There are two ways to improve the confinement effect of high strength concrete columns through the increase of amounts and/or strength of transverse reinforcement.

자전거 프레임 특정부분의 보강효과와 프레임에 미치는 응력과 변형 연구

  • Kim, Tae-Hun;Yang, Dong-Min;Ha, Yun-Su
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.207-211
    • /
    • 2015
  • In this paper, 2 kinds of models about bike frame are simulated with static structural analysis. A bike frame with diamond type is compared with another model that Down tube is eliminated from original diamond frame. About both types of models, Property of a material and conditions of restriction & load are the same. This study shows reinforcement effects of a partial frame by adding down tube and impacts generated by applying a load at the frame such as weak points & high stress parts as well as expected deformation. The structural result of this study indicates that the equivalent stress or total deformation decreases by 57.1% or 36.4%, respectively. Also stress concentration sites are leg connecting parts, front/rear wheels fixed region and Max deformation is generated from Seat tube. In conclusion, A Down tube is highly efficient as reinforcement than frame without non down tube. Furthermore, The safety rises in case of reducing top tube thickness and increasing a reinforcement at leg connecting parts or concentration regions.

  • PDF

Development of Carbon-Ceramic Composites using Fly Ash and Carbon Fibers as Reinforcement

  • Manocha, S.;Patel, Rakesh
    • Carbon letters
    • /
    • v.7 no.1
    • /
    • pp.27-33
    • /
    • 2006
  • Carbon-ceramic composites were fabricated by using fly ash and PANOX fibers as reinforcement. Fly ash, because of its small size particles e.g. submicron to micron level can be effectively dispersed along with fibrous reinforcements. Phenolic resin was used as carbon precursor. Both dry as well as wet methods were used for forming composites. The resulting composites were characterized for their microstructure, thermal and mechanical properties. The microstructure and mechanical properties of composites are found to be dependent on type of the fly ash, fibrous reinforcements as well as processing parameters. The addition of fly ash improves hardness and the fibers, which get co-carbonized on heat treatment, increase the flexural strength of the carbon-ceramic composites. Composites with dual reinforcement exhibit about 30-40% higher strength as compared to the composites made with single reinforcement, either with fly ash as filler or with chopped fibers.

  • PDF

Experimental study on improving bamboo concrete bond strength

  • Mali, Pankaj R.;Datta, Debarati
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.191-201
    • /
    • 2019
  • Bamboo concrete bond behaviour is investigated through pullout test in this work. The bamboo strip to be used as reinforcement inside concrete is first treated with chemical adhesive to make the bamboo surface impermeable. Various surface coatings are explored to understand their water repellant properties. The chemical action at the bamboo concrete interface is studied through different chemical coatings, sand blasting, and steel wire wrapping treatment. Whereas mechanical action at the bamboo concrete interface is studied by developing mechanical interlock. The result of pullout tests revealed a unique combination of surface treatment and grooved bamboo profile. This combination of surface treatment and a grooved bamboo profile together enhances the strength of bond. Performance of a newly developed grooved bamboo strip is verified against equivalent plain rectangular bamboo strip. The test results show that the proposed grooved bamboo reinforcement, when treated, shows highest bond strength compared to treated plain, untreated plain and untreated grooved bamboo reinforcement. Also, it is observed that bond strength is majorly influenced by the type of surface treatment, size and spacing of groove. The changes in bamboo-concrete bond behavior are observed during the experimentation.

Effect of thickness and reinforcement on concrete plates under high speed projectiles

  • Tais, Abdalla S.;Ibraheem, Omer F.;Raoof, Saad M.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.587-594
    • /
    • 2022
  • Behavior of concrete elements under the effect of high-speed projectiles has gain increasing interest recently. It's necessary to understand how far the concrete can absorb the effect of bullets in order to save the occupants when design security and military infrastructures. This study presents a total of 18 concrete slabs casted and tested under reinforcement ratios, 0%, 0.35% and 0.7%. Parameters interested were slab thickness, (50 mm, 100 mm, and 150 mm) and type of weapon. All specimens tested to investigate their response under the effect of attacking by two common types of weapon. In general, it was found that projectile penetration was controlled by their thickness regardless the steel reinforcement ratio. However, the steel reinforcement controls the damage.

Experimental study on fracture properties with re-bar reinforcement of cement composite subjected to impact of high-velocity projectile (고속 발사체 충격을 받은 시멘트 복합체의 철근보강에 따른 파괴 특성에 관한 실험적 연구)

  • Seok, Won-Kyun;Kim, Gyu-Yong;Nam, Jeong-Soo;Lee, Yae-Chan;Jeon, Hyun-Soo;Kim, Young-Sun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.220-221
    • /
    • 2022
  • With reent changes in energy sources, infrastructure facilities for energy charging are increasing around living areas. The infrastructure facilities have a slight possibility of explosion, and for this research on protection is needed. In this study, the performance of the reinforcement type is reviewed by examining the destructive properties after applying the impact by the high-velocity projectile to the cement composite to which various reinforcement methods are applied.

  • PDF

Soil-Reinforcement Interaction Determined by Extension Test (인장시험(引張試驗)에 의한 보강토(補强土)의 거동결정(擧動決定))

  • Kim, Oon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 1988
  • The new technique has been used to determine the soil-reinforcement interaction. The testing apparatus is essentially a triaxial cell fitted with the capability to house a hollow cylinderical sample. A hollow cylinderical sand specimen with a concentrical layer of reinfarcing material sandwitched in the middle is used in this investigation. The reinforcement is fastened at the base. The hollow specimen can be viewed as a "unit sheet" of a soil-reinforcement composite system of infinite horizontal extent. Axial load as well as inner and outer chamber pressures can be applied to perform a test. The specimen is first subjected to an isotropic stress state corresponding to the overburden pressure. Next, an extension test by reducing the axial load is carried out. The specimen is "loaded" to failure by either the breakage of reinforcing material (tensile failure) or slippage which takes place at the soil-reinforcement interface (i.e. the overcoming of the bonding capacity). Since the reinforcement is fastened at its lower end to the base, any tendency of relative movement between the reinforcement and the sand during an extension test can induce tensile force in the reinforcement thus forming a "reversed pull-out" test condition. Preliminary test results have demonstrated positively of the new approach to test the soil-reinforcement interaction. Reinforcing elements of different extensibility were used to study the deformbility of reinforced soil. Furthermore, both the breakage and the pull-out modes of failure were observed.

  • PDF

Experimental study on nano silica modified cement base grouting reinforcement materials

  • Zhou, Fei;Sun, Wenbin;Shao, Jianli;Kong, Lingjun;Geng, Xueyu
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.67-73
    • /
    • 2020
  • With the increasing number of underground projects, the problem of rock-water coupling catastrophe has increasingly become the focus of safety. Grouting reinforcement is gradually applied in subway, tunnel, bridge reinforcement, coal mine floor and other construction projects. At present, cement-based grouting materials are easy to shrink and have low strength after solidification. In order to overcome the special problems of high water pressure and high in-situ stress in deep part and improve the reinforcement effect. In view of the mining conditions of deep surrounding rock, a new type of cement-based reinforcement material was developed. We analyses the principle and main indexes of floor strengthening, and tests and optimizes the indexes and proportions of the two materials through laboratory tests. Then, observes and compares the microstructures of the optimized floor strengthening materials with those of the traditional strengthening materials through scanning electron microscopy. The test results show that 42.5 Portland cement-based grouting reinforcement material has the advantages of slight expansion, anti-dry-shrinkage, high compressive strength and high density when the water-cement ratio is 0.4, the content of bentonite is 4%, and the content of Nano Silica is 2.5%. The reinforcement effect is better than other traditional grouting reinforcement materials.