• Title/Summary/Keyword: Reinforcement type

Search Result 886, Processing Time 0.032 seconds

Applicability Analysis of Foundation Reinforcement Method for Expanding Underground Parking Lot Using AHP Technique (AHP기법을 활용한 지하주차장 기초보강공법의 적용성 분석)

  • Shin, Myeong-Ha;Lee, Chansik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.93-101
    • /
    • 2017
  • The shortage of parking lots in aged apartment complexes built from the 1980s to the mid 1990s is serious. When we look at the case of parking lot expansion in the aged apartment complexes, the method of extending the underground parking lot vertically occupies the majority. It is very important to secure the structural safety of the foundations when the existing buildings are enlarged. In the case of underground vertical work, the work space should be narrow, so that a method with excellent safety, environmental and construction properties should be applied. Urban construction is also required to use construction methods and equipment with low noise and vibration. This study analyzed the factors influencing the selection of the foundation reinforcement method for the expansion of the underground parking lot and Weights of influence factors were calculated. The purpose of this study was to analyze the applicability of the foundation reinforcement method. Factors influencing the applicability of the foundation reinforcement method were derived through expert interviews and The AHP technique was used to calculate the weight of the influencing factors. It was evaluated by experts on the applicability of the foundation reinforcement method. It conducted a case study on two types of underground parking lot expansion type and compared the applicability of the foundation reinforcement method.

Effect of the Embedded Reinforcing Bar of Specimens on the Compressive Strength of Concrete (공시체에 포함된 철근이 콘크리트 압축강도에 미치는 영향)

  • Ko, Hune-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.552-558
    • /
    • 2016
  • Recently, the repair and reinforcement of deteriorated concrete buildings has attracted much interest. In order to accurately evaluate the safety of these existing structures, it is essential to know the strength of the concrete that they are composed of. The core drilling method is considered to be the most effective and common method of assessing the compressive strength of concrete. In general, the regulations do not permit the core specimens within reinforcing bars to be used to assess the strength of the concrete, even if the core specimens contain reinforcing bars in some cases. The purpose of this study is to investigate the effects of the reinforcement arrangement on the compressive strength of concrete, and to propose the quantitative specific standard of strength for core specimens containing reinforcements, in order to facilitate their safe inspection by repair or retrofit companies who want to evaluate the soundness of the structures. To complete this research, one type of cylinder specimen without reinforcement and 14 types of specimens with reinforcement arrangements were prepared and their compressive strength evaluated. It was found that the strength of the cylinders with reinforcement volumes of up to $50cm^3$ (about 4-ϕ13mm) was more than 80% of that of the cylinders without any reinforcement.

Static Strength Evaluation Equations of ㄱType Perfobond Rib Shear Connectors (ㄱ형 perfobond 리브 전단열결재의 정적 강도평가식)

  • Lee Heung-Su;Chung Chul-Hun;Sohn You-Shik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.451-454
    • /
    • 2005
  • The ㄱ type perfobond rib shear connector is a ㄱ type flat steel plate with a number of holes punched through. This connector can be effectively used in girder with high shear. The ㄱ type perfobond rib shear connector exhibit very stiff behaviour under service load conditions and also had the characteristic of retaining a significant amount of load after the attainment of ultimate capacity. A regression analysis, which is based on a model that takes into account the contributions of concrete dowels formed by the rib holes, the transverse reinforcement, the strength of concrete in front of the rib, and the ㄱ type plate as well as a nonlinear finite element analysis, is used in the derivation. An empirical equation for the design of ㄱ type perfobond rib shear connector is proposed.

  • PDF

Reinforcing Effects of Umbrella-type Shell Roofs with Stiffeners (우산형 쉘 지붕의 보강재 보강효과)

  • Son, Byung-Jik;Jung, Dae-Suck;Lee, Kyu-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.45-50
    • /
    • 2007
  • In this study, reinforcing effects of umbrella-type shell roofs structures such as stadium, exhibition, auditorium and museum are analyzed. Umbrella-type shell roofs treated in this study are practical shapes of conical shells. The objective of this study is to analyze reinforcing effects of umbrella-type shell roofs with stiffeners. Various locations of stiffeners, that is, edge ring A, B, center ring, junction stringer and center stringer are presented and the effects of reinforcement is examined. Also, the reduction effects of roofs thickness by stiffeners are examined. It is shown that the thickness of roofs can be reduced about $20{\sim}30%$ by junction stringer and more than 60% by edge ring A.

Influence of loose bonding, initial stress and reinforcement on Love-type wave propagating in a functionally graded piezoelectric composite structure

  • Singh, Abhishek K.;Parween, Zeenat;Chaki, Mriganka S.;Mahto, Shruti
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.341-358
    • /
    • 2018
  • This present study investigates Love-type wave propagation in composite structure consists of a loosely bonded functionally graded piezoelectric material (FGPM) stratum lying over a functionally graded initially-stressed fibre-reinforced material (FGIFM) substrate. The closed-form expressions of the dispersion relation have been obtained analytically for both the cases of electrically open and electrically short conditions. Some special cases of the problem have also been studied and the obtained results are found in well-agreement with the classical Love wave equation. The emphatic influence of wave number, bonding parameter associated with bonding of stratum with substrate of the composite structure, piezoelectric coefficient as well as dielectric constant of the piezoelectric stratum, horizontal initial stresses, and functional gradedness of the composite structure on the phase velocity of Love-type wave has been reported and illustrated through numerical computation along with graphical demonstration in both the cases of electrically open and electrically short condition for the reinforced and reinforced-free composite structure. Comparative study has been carried out to analyze the distinct cases associated with functional gradedness of the composite structure and also various cases which reveals the influence of piezoelectricity, reinforcement and horizontal initial stress acting in the composite structure, and bonding of the stratum and substrate of the composite structure in context of the present problem which serves as one of the major highlights of the study.

Friction Properties between Fiber-Mixed Soil and Geogrid (섬유혼합토와 지오그리드 사이의 마찰 특성 평가)

  • Cho, Sam-Deok;Lee, Kwang-Wu;An, Ju-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.1
    • /
    • pp.27-37
    • /
    • 2003
  • The factors affecting shear strength and friction characteristics of the fiber-mixed soil can be classified into engineering properties of soil; particle-size, distribution, and particle shape, physical and mechanical properties of fiber; shape, length, diameter, tensile strength, elastic modulus, friction coefficient, and mixed ratio and external factors; confined stress and compaction condition. In this study, a series of shear friction tests and pull-out tests were performed to evaluate the friction properties of fiber-mixed soil according to soil type, fiber type, fiber mixed ratio and compaction degree. The materials and test conditions used in this study are as follows. Soils: SM and ML; mixing fibers: three types of polypropylene fibers(net type 38mm and 60mm, and line type 60mm); reinforcement: geogrid; mixing ratio: 0.2% and 0.3%; degree of compaction : 85% and 95%.

  • PDF

The Bond Behavior between Deformed bars and Recycled Fine Aggregate Concrete according to Bar Position. (철근 위치에 따른 이형철근과 순환잔골재 콘크리트의 부착거동)

  • You, Young-Chan;Jang, Yong-Heon;Lee, Min-Jung;Yun, Hyun-Do;Choi, Ki-Sun;Lee, Do-Heun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1089-1092
    • /
    • 2008
  • The bond behavior between concrete and reinforcement is a important requirement for reinforced concrete constructions. For practical application, it is very important to study bond behavior of reinforcing bars in recycled fine aggregate concrete. Therefore, pull-out test in order to investigate the bond behavior between recycled fine aggregate concrete and deformed bars was performed. Recycled fine aggregate concrete replacement ratios (i.e., 0% and 100%) and positions of deformed bars (i.e., vertical and horizontal position) were considered as variables in this study. Test results were compared with the bond strength requirement recommended by CEB-FIP code. Based on the test results, It was found that the bond strength between the recycled fine aggregate concrete and deformed bars were influenced by both recycled fine aggregate concrete replacement ratios and positions of deformed bars. The reduction of bonded area at the soffit of horizontal reinforcement caused by concrete bleeding was observed in H type specimen. So, Only V type and HB specimen satisfied the bond strength requirement recommended by CEB-FIP code.

  • PDF

A Study on the Improvement of Adhesion in Tension and Flexure of Polymer Cement Mortar Depending on Various Test Methods (시험방법에 따른 폴리머 시멘트 모르타르의 인장 및 휨접착강도 개선에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.47-57
    • /
    • 2019
  • The purpose of this study is to evaluate the improvement effect of adhesion in tension and flexure of polymer cement mortars that have widely used as a repair-reinforcement material in construction field according to adding of polymer dispersions depending on different three types test methods. From the test results, the adhesion performance is improved with a raise in polymer-cement ratio irrespective of the type of polymer. The maximums of A type adhesion in tension, B type adhesion in tension and adhesion in flexure show 1.90 times, 2.17 times and 1.83 times, respectively that of plain cement mortar. The relative strength ratios, B type adhesion in tension and adhesion in flexure of polymer cement mortars to tensile and flexural strengths of plain mortar respectively are in ranges of 50.1% to 101.7% and 73.8% to 132.9% compared to 46.9% of plain mortar. It is apparent that polymer cement mortars with EVA and polymer cement ratios of 10% to 15% are recommended considering its adhesion performance and cost as a repair-reinforcement material in construction field.

Lateral Load Test for Various Aseismatic Methods of Pile Heads of Pier Type Quay Walls (잔교식 안벽의 말뚝 두부 내진 보강기법에 따른 수평재하실험)

  • 이용재;한진태;장인성;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.98-106
    • /
    • 2003
  • To construct pile-supported wharf structures that must support heavy horizontal loads, both vertical piles and batter piles are used. Batter piles are used to secure the bearing capacity against the horizontal loads. However, past case histories have shown that the heads of batter piles are vulnerable because these heads are subjected to excessive axial loads during earthquakes. Therefore, the aseismatic reinforcement method must be developed to prevent batter pile heads from breaking due to excessive seismic loads. Two different connecting methods of either inserting rubber or ball-bearing between batter pile head and upper plate were proposed to improve the aseismatic efficiency. Three large-scale pile head models(rubber type model, ball-bearing type model, and fixed type model) were manufactured and horizontal loading tests were peformed for these models. The results showed that the force-displacement relationship of the fixed type model was linear, but that of the rubber type model and the ball-bearing type model was bilinear. The increase in the horizontal displacement led to the increase in the horizontal stiffness of the rubber type models and the decrease in that of the ball-bearing type model. Compared with the values for fixed type model, the damping ratios of the rubber type model and the ball-bearing type model increased about 33~185% and 263~269%, respectively.

  • PDF

An Experimental Study on the Behavior of Reinforced Concrete Multi-Column Piers with Different Longitudinal and Transverse Reinforcement Details (주철근 겹침이음 및 횡철근 상세에 따른 철근콘크리트 다주교각의 거동특성에 관한 실험적 연구)

  • 김재관;김익현;김정한;조대연
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.211-219
    • /
    • 2002
  • This study is performed to investigate the behavior of multi-column piers and to evaluate the seismic performance. In this study, 3 types of scale model piers with 2-column are designed and tested by quasi-static load in both longitudinal and transverse directions. Each type of model consisting of 2 specimens has different reinforcement details in the lap splice of longitudinal bars and amount of transverse reinforcements. This paper reports that the ductility of the model in transverse direction is rather higher than in longitudinal direction because of formation of several plastic hinges and that the ultimate displacement and the energy absorbtion capacity are enhanced by using continuous longitudinal bars instead of lap-splice ones. And it is confirmed that relatively large amount of ductility can be achieved by providing sufficient lap-splice length and transverse reinforcements with end hook even if longitudinal bars are lap spliced in the base of pier.

  • PDF