• Title/Summary/Keyword: Reinforcement type

Search Result 886, Processing Time 0.025 seconds

A Study on the Enhancement of Fire Resistance Function in Primary Structure Department of Building Type Traditional Market (건물형 전통시장 화재발생시 피난안전성 확보를 위한 규모별 주요구조부 내화보강 연구)

  • Jang, Hye-Min;Hwang, Jung-Ha
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.87-95
    • /
    • 2020
  • This study evaluates the safety of an asylum through a fire simulation of building Type traditional markets. We derive the building's indoor temperature, use the observed variation in temperature gradient to calculate the temperature of the main structure, and finally compares the time required to attain the limit temperature of the structure its time of escape. To ensure improved security of the asylum, the government has proposed a fire-resistance improvement plan for the major structural parts of buildings are not safe with thickness of 0.01 m and 0.035 m. F.ire-resistance reinforcement for small - and medium-sized vehicles is more than 0.025 m, in thickness; moreover safety can be ensured for medium and large-sized vehicles fire using fire resistant reinforcement of over 0.035 m. Accordingly, in order to ensure the safety of an asylum, fire-resistant reinforcement measures may be considered.

Tribological performance of UHMWPE reinforced with carbon nanotubes in bovine serum

  • Zoo, Yeong-Seok;Lim, Dae-Soon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.363-364
    • /
    • 2002
  • Although the factors that cause the failure of orthopedic implants were not clearly determined, it was reported that the shapes of wear debris affect the tribological behavior of artificial implant. Many researches were conducted to examine the wear mechanism by debris but the role of debris shape in inflammatory reaction remains unclear. To observe the debris shape by addition of reinforcement, carbon nanotubes ( CNTs ) were added to ultra high molecular weight polyethylene ( UHMWPE ) to investigate the reinforcement effect of CNTs. CNTs which have a diameter of about 10-50 nm, while their length is about 3-5 nm were produced by the catalytic decomposition of the acetylene gas using a tube furnace. Plate on disc type wear test were performed to evaluate the tribological performance of UHMWPE composites reinforced with CNTs in lubricating condition ( bovine serum ). The wear losses of CNT added UHMWPE in bovine serum were significantly reduced. Worn surface and wear debris of UHMWPE with CNTs and without CNTs were compared to investigate the reinforcement effect of CNT on tribological behavior.

  • PDF

Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle

  • Boulal, Ammar;Bensattalah, Tayeb;Karas, Abdelkader;Zidour, Mohamed;Heireche, Houari;Adda Bedia, E.A.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.209-223
    • /
    • 2020
  • This paper investigates the buckling behavior of carbon nanotube-reinforced composite plates supported by Kerr foundation model. In this foundation elastic of Kerr consisting of two spring layers interconnected by a shearing layer. The plates are reinforced by single-walled carbon nanotubes with four types of distributions of uniaxially aligned reinforcement material. The analytical equations are derived and the exact solutions for buckling analyses of such type's plates are obtained. The mathematical models provided, and the present solutions are numerically validated by comparison with some available results in the literature. Effect of various reinforced plates parameters such as aspect ratios, volume fraction, types of reinforcement, parameters constant factors of Kerr foundation and plate thickness on the buckling analyses of carbon nanotube-reinforced composite plates are studied and discussed.

Experimental bond behavior of hybrid rods for concrete reinforcement

  • Nanni, Antonio;Nenninger, Jeremy S.;Ash, Kenneth D.;Liu, Judy
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.339-353
    • /
    • 1997
  • Fiber reinforced plastic (FRP) rods provide certain benefits over steel as concrete reinforcement, such as corrosion resistance, magnetic and electrical insulation, light weight, and high strength. FRP composites can be combined with a steel core to form hybrid reinforcing rods that take advantage of properties of both materials. The objective of this study was to characterize the bond behavior of hybrid FRP rods made with braided epoxy-impregnated aramid or poly-vinyl alcohol FRP skins. Eleven rod types were tested using two concrete strengths. Specific topics examined were bond strength, slip, and type of failure in concentric pull-out tests from concrete cubes. From analysis of identical pull-out tests on both hybrid and steel rods, information on relative bond strength and behavior were obtained. It is concluded that strength is similar but slip in hybrid rods is much higher. Hybrid rods failed either by pull-out or splitting the concrete block (with or without yielding of the steel core). Experimental data showed consistency with similar test results presented in the literature.

Stability Estimation Method for Pillar Considering the Reinforcement Method during Twin-Tunnel Excavation (병설터널 굴착시 필라부의 보강을 고려한 안정성 평가기법)

  • Jang, Bu-Sik;Hwang, Jung-Soon;Ryu, June-Won;Lee, Eung-Ki;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.980-987
    • /
    • 2006
  • Recently, twin-tunnel is often designed considering the aspects of disaster prevention and economic reasons. However, the design cases and the studies are relatively insufficient. By the twin-tunnel excavation, deviate stresses of pillar between tunnels are increased and the increased stresses induce the instability of the twin-tunnel. In this study, numerical analyses about the twin-tunnel behaviour are conducted while varying ground strength, width of pillar and depth of earth cover and a series of regression analyses are carried out by using the results of numerical analyses for the twin-tunnel. Based on the numerical analyses, an estimation method of derived stresses is suggested though the regression analyses. Also, based on the results of regression analyses, an quantitative estimation method considering the reinforcement effects is also suggested. Then various parametric studies are conducted to be considered the reinforcement type and various design parameters. Finally, the efficiency of the suggested method is verified through the results of parametric studies.

  • PDF

Optimum Evaluation of Reinforcement Cord of Air Spring for the Vehicle Suspension System (자동차 현가장치를 위한 에어스프링 보강코드의 최적 성능평가)

  • Kim, Byeong-Soo;Moon, Byung-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.357-362
    • /
    • 2011
  • Air springs are prevalently used as suspension in train. However, air springs are seldom used in automobiles where they improve stability and comfort by enhancing the impact-relief, breaking, and cornering performance. Thus, this study proposed a new method to analyze air springs and obtained some reliable design parameter which can be utilized in vehicle suspension system in contrast to conventional method. Among air spring types of suspension, this study focused on sleeve type of air spring as an analysis model since it has potential for ameliorating the quality of automobiles, specifically in its stability and comfort improvement by decreasing the shock through rubber sleeve. As a methodology, this study used MARC, as a nonlinear finite element analysis program, in order to find out maximum stress and maximum strain depending on reinforcement cord's angle variation in sleeves. The properties were found through uniaxial tension and pure shear test, and they were developed using Ogden Foam which is an input program of MARC. As a result, the internal maximum stresses and deformation according to the changes of cord angle are obtained. Also, the results showed that the Young's modulus becomes smaller, then maximum stresses decrease. It is believed that these studies can be contributed in automobile suspension system.

Application of D-ROG technology for restoration of the subsided building (침하건물 복원을 위한 정밀 다점 주입공법의 적용)

  • Lee, Ju-Hyung;Koh, Hyo-Seog;Hong, Jin-Pyo;Park, Jae-Hyun;Cho, Sam-Deok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.405-410
    • /
    • 2009
  • This paper presents a case study that achieved both of serviceability and safety of the building through soil reinforcement and restoration around foundations subjected to serious differential settlement using D-ROG method. The building which has one basement floor and three ground floors is founded on soft ground and differential settlement occurred to the maximum extent of 678mm. The foundation type of the building is a independent mat foundation. Soil profiles consist of landfill layer, alluvial layer, weathered rock, and soft rock. The bearing layer consisting of gravel and weathered rock is located 16.0~17.0m below the bottom of the building. As a result of soil reinforcement and restoration, the recovery ratio of more than 90% can be attained with the maximum set-up of 657mm.

  • PDF

Crack mapping in RC members using distributed coaxial cable crack sensors: modeling and application

  • Greene, Gary Jr.;Belarbi, Abdeldjelil;Chen, Genda
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.385-404
    • /
    • 2005
  • The paper presents a model to calculate reinforcement strain using measured crack width in members under applied tension, flexure, and/or shear stress. Crack mapping using a new type of distributed coaxial cable sensors for health monitoring of large-scale civil engineering infrastructure was recently proposed and developed by the authors. This paper shows the results and performance of such sensors mounted on near surface of two flexural beams and a large scale reinforced concrete box girder that was subjected to cyclic combined shear and torsion. The main objectives of this health monitoring study was to correlate the sensor's response to strain in the member, and show that magnitude of the signal's reflection coefficient is related to increases in applied load, repeated cycles, cracking, and reinforcement yielding. The effect of multiple adjacent cracks, and signal loss was also investigated. The results shown in this paper are an important step in using the sensors for crack mapping and determining reinforcement strain for in-situ structures.

A study on the Steel Plate Girder Railway bridge in the applying External Post-tensioning Method (강철도교에 대한 외부 후긴장 보강공법의 적용에 관한 연구)

  • Choi Jung-Youl;Park Yong-Gul;Byun Jong Gul
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1034-1039
    • /
    • 2004
  • The major objective of this study is to investigate the effects and application of reinforcement for steel plate girder railway bridge by the external prestressing method. It analyzed the mechanical behaviors of non-ballasted railway bridge with ballast reinforced and external post-tensioning reinforced on the finite clement analysis for the static and dynamic behavior. As a result, the reinforcement of ballasted railway bridge the external prestressing method are obviously effective for the additional dead force which is ballast. The analytical study are carried out to investigate the post-tension force decrease bending behavior and deflection in composite bridge for serviceability. To develop two type FEM model which reflect well the post-tension force transverse distribution behavior of servicing bridge. With the comparing the results of railway bridge with ballast which carried out before the post-tensioning with the results of railway bridge with ballast which carried out after post-tensioning, It is investigated that the additional dead load decrease effect and bending behavior of servicing bridge is effect by the post-tensioning. The reinforcement by using the external tendon can be reducing that structure of a degradation phenomenon by unusual stresses due to additional dead load and other problems.

  • PDF

Processability and Mechanical Characteristics of Glass Fiber and Carbon Fiber Reinforced PA6 for Reinforcement Content

  • Lee, S.B.;Cho, H.S.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.184-188
    • /
    • 2015
  • There is a need for light weight and high stiffness characteristics in the building structure as well as aircraft and cars. So fiber reinforced plastic with the addition of reinforcing agent such as glass fiber, carbon fiber, aramid fiber is utilized in this regard. In this study, mechanical strength, flow property and part shrinkage of glass fiber and carbon fiber reinforced PA6 were examined according to reinforcement content such as 10%, 20%, and 30%, and reinforcement type. The mechanical property was measured by a tensile test with specimen fabricated by injection molding and the flow property was measured by spiral test. In addition, we measured the part shrinkage of fiber reinforced PA6 that affects part quality. As glass fiber content increases, mechanical property increased by 75.4 to 182%, and flow property decreased by 18.9 to 39.5%. And part shrinkage decreased by 52.9 to 60.8% in the flow direction, and decreased by 48.2 to 58.1% in the perpendicular to the flow direction. As carbon fiber content increases, mechanical property increased by 180 to 276%, flow property decreased by 26.8 to 42.8%, and part shrinkage decreased by 65.0 to 71.8% and 69.5 to 72.7% in the flow direction and the direction perpendicular to the flow respectively.