• Title/Summary/Keyword: Reinforcement type

Search Result 886, Processing Time 0.026 seconds

Experimental Study on Hysteretic Behavior of 100 MPa Ultra High-Strength Concrete Tied Columns (100 MPa 초고강도 콘크리트 띠철근 기둥의 이력거동에 관한 실험적 연구)

  • Kim, Jong-Keun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.161-168
    • /
    • 2006
  • An experimental investigation was conducted to examine the hysteretic behaviors of ultra-high strength concrete tied columns. The purpose of this study is to investigate the safety of ultra-high strength concrete columns with 100 MPa compressive strength for the requirement of ACI provisions. Eight 1/3 scaled columns were fabricated to simulate an 1/2 story of actual structural members with the cross section $300{\times}300mm$ and the aspect ratio 4. The main variables are axial load ratio, configurations and volumetric ratios of transverse reinforcement. The results show that the deformability of columns are affected by the configurations and volumetric ratios of transverse reinforcement. Especially, it has been found that the behavior of columns are affected by axial load ratio rather than the amounts and the configurations of transverse reinforcement. Consequently, to secure the ductile behavior of 100 MPa ultra-high strength concrete columns, ACI provisions for the requirement of transverse steel may considered axial load level and the details of transverse reinforcement.

A Study on the Reinforcement of the Damaged Stone Surface by Dismantling of Stone Cultural Heritages - Focusing on the Experiment of a Sublimation(Reversibility) type Consolidant - (석조문화재 해체에 따른 표면 손상부분 보강방안 연구 - 승화성(가역성) 강화처리제 적용실험을 중심으로 -)

  • Lee, Tae Jong;Oh, Hyeon Jung;Cho, Ha Jin;Kim, Sa Dug
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.351-360
    • /
    • 2015
  • This is the result of the study on the temporary fortifier using sublimation type Consolidate is Cyclododecane to prepare plan for reinforcement of the surface part that can be damaged during the dismantling of stone cultural heritages. To supplement the disadvantages of the existing reinforcement methods using intumescent urethane foam, Cyclododecane was diluted in solvent to reinforce the surface and inside desquamation, and after dismantling the framework, it sublimated by imposing heat of about $60^{\circ}C$. Such method can guarantee the strength needed for reinforcement of the damaged surface with outstanding reversibility of Cyclododecane being entirely sublimated. But, it shows big difference of effect according to the solvent, so it shall be diluted in petroleum ether or heated in a double boiler. Therefore, considering the working conditions at the site, it seems the most appropriate to use petroleum ether double boiler heating method for injection and filling of the desquamation part and temporary reinforcement processing with Cyclododecane diluted in petroleum ether for surface spraying.

A Study on the Bearing Capacity of Shallow Foundation according to the Reinforcement Geocell Layer (지오셀 보강 층수에 따른 얕은 기초의 지지력에 관한 연구)

  • Lee, Kyong-Cheon;Baek, Young-Sik;Park, Young-Hun;Kim, Nag-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.85-96
    • /
    • 2003
  • The Geocell system is the advanced system of Geo-grids, and is one of geosynthetics used for earth reinforcement of weak soil. It is the way to increase earth strength and bearing capacity by using three dimension type of geo-composite. This paper analyzed the bearing capacity mechanism of Geocell system for earth reinforcement. Plate loading tests under the model laboratory condition were performed, and the increase of bearing capacity and the decrease of settlement with shallow foundation were evaluated.

  • PDF

A study of tunnel face reinforcement (터널 막장보강효과에 대한 연구)

  • Peila, Daniele;Oreste, Pier Paolo;Pelizza, Sebastiano;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.3
    • /
    • pp.259-267
    • /
    • 2004
  • The practice of introducing and grouting reinforced fiber glass pipes or bar into the core to be excavated to maintain stable the tunnel face during excavation has been applied to many tunnels, where difficult geotechnical conditions are present, with good results in terms of safety and speed of works. This reinforcing technique, initially developed to be used jointly with the mechanical precut in clay, has been widely used with other geotechnical conditions as the only type of reinforcement or joined with other ground consolidation and/or reinforcement techniques (i.e. steel pipes or jet-grouting umbrella). At present same numerical researches have been carried out to find which are the real working conditions of the reinforcing elements but no final results have been obtained for the definition of the best design approaches. In this work the results of a three dimensional parametric numerical model is presented.

  • PDF

An Experimental and Analytical study on the Steel Plate Girder Railway bridge in the applying External Post-tensioning Method (강철도교에 대한 외부 후긴장 보강공법의 적용에 관한 실험 및 해석적 연구)

  • Park, Young-Hoon;Cho, Sun-Kyu;Choi, Jung-Youl;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.151-159
    • /
    • 2006
  • It analyzed the mechanical behaviors of non-ballasted railway bridge (steel plate girder type) with ballast reinforced on the finite element analysis, field test and laboratory test far the static and dynamic responses. The major objective of this study is to investigate the effects and application of reinforcement for steel plate girder railway bridge by the external post-tensioning method. The reinforcement of non-ballast railway bridge had obviously stable dynamic behaviors due to the additional dead force which was ballast. But in case of static behaviors, static displacements and stresses had increased nearly the allowable values. Therefore we analyzed the mechanical behaviors of non-ballasted railway bridge with ballast reinforced and external post-tensioning reinforced on the finite element analysis and laboratory test for the static and dynamic behavior. As a result, the reinforcement of ballasted railway bridge the external post-tensioning method are obviously effective for the additional dead force which is ballast. The analytical and experimental study are carried out to investigate the post-tension force decrease bending behavior and deflection in composite bridge for serviceability. The servicing railway bridge with ballast reinforced has need of the reasonable reinforcement measures which could be reducing the effect of additional dead load that degradation phenomenon of structure by an unusual. stresses and a drop durability.

Reinforcement Effects of Buckling Member for Single-layer Latticed Dome (단층래티스 돔의 좌굴부재 보강효과에 관한 연구)

  • Jung, Hwan-Mok;Yoon, Seok-Ho;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.45-52
    • /
    • 2016
  • The single layer latticed domes have attracted many designers and researchers's attention all of the world, because these structures as spatial structure are of great advantage in not only mechanical rationality but also function, fabrication, construction and economic aspect. But single layer latticed domes are apt to occur the unstable phenomena that are called "buckling" because of the lack of strength of members, instability of structural shape, etc. In the case of latticed dome, there are several types of buckling mode such as overall buckling, local buckling, and member buckling according to the shape of dome, section type of member, the size of member, junction's condition of member and so on. There are many methods to increase the buckling strength of the single layer latticed dome, that is, with the change of geometrical shape of dome, the reinforcement of buckled member, etc. Therefore, the purpose of this study is to verify the reinforcement effect of buckled member when designers reinforce the buckled member to increase the buckling strength of single layer latticed dome with 3-way grid.

Experimental investigations of the seismic performance of bridge piers with rounded rectangular cross-sections

  • Shao, Guangqiang;Jiang, Lizhong;Chouw, Nawawi
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.463-484
    • /
    • 2014
  • Solid piers with a rounded rectangular cross-section are widely used in railway bridges for high-speed trains in China. Compared to highway bridge piers, these railway bridge piers have a larger crosssection and less steel reinforcement. Existing material models cannot accurately predict the seismic behavior of this kind of railway bridge piers. This is because only a few parameters, such as axial load, longitudinal and transverse reinforcement, are taken into account. To enable a better understanding of the seismic behavior of this type of bridge pier, a simultaneous influence of the various parameters, i.e. ratio of height to thickness, axial load to concrete compressive strength ratio and longitudinal to transverse reinforcements, on the failure characteristics, hysteresis, skeleton curves, and displacement ductility were investigated. In total, nine model piers were tested under cyclic loading. The hysteretic response obtained from the experiments is compared with that obtained from numerical studies using existing material models. The experimental data shows that the hysteresis curves have significantly pinched characteristics that are associated with small longitudinal reinforcement ratios. The displacement ductility reduces with an increase in ratio of axial load to concrete compressive strength and longitudinal reinforcement ratio. The experimental results are largely in agreement with the numerical results obtained using Chang-Mander concrete model.

Seismic response of geosynthetic reinforced retaining walls

  • Jesmani, Mehrab;Kamalzare, Mehrad;Sarbandi, Babak Bahrami
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.635-655
    • /
    • 2016
  • The effects of reinforcement on the horizontal and vertical deformations of geosynthetic reinforced retaining walls are investigated under a well-known seismic load (San Jose earthquake, 1955). Retaining walls are designed with internal and external stability (with appropriate factor of safety) and deformation is chosen as the main parameter for describing the wall behavior under seismic load. Retaining walls with various heights (6, 8, 10, 12 and 14 meter) are optimized for geosynthetics arrangement, and modeled with a finite element method. The stress-strain behavior of the walls under a well-known loading type, which has been used by many previous researchers, is investigated. A comparison is made between the reinforced and non-reinforced systems to evaluate the effect of reinforcement on decreasing the deformation of the retaining walls. The results show that the reinforcement system significantly controls the deformation of the top and middle of the retaining walls, which are the critical points under dynamic loading. It is shown that the optimized reinforcement system in retaining walls under the studied seismic loading could decrease horizontal and vertical deformation up to 90% and 40% respectively.

Model Test of Lining for Estimation of Tunnel Soundness (터널 건전도 평가를 위한 라이닝 모델실험)

  • Kim, Young Keun
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.1 no.2
    • /
    • pp.59-71
    • /
    • 1999
  • Recently, many deformations in tunnel such as crack and leakage were occulted. Specially, the defects of tunnel lining have been a serious problem in safety and stability many repair works for maintenance in tunnel have been carried out. Therefore, it is necessary to estimate the structural cracking for countermeasure in deformed tunnel and to investigate on the characteristics of lining system and the soundness of tunnel. In this study model tests for tunnel lining were carried out using test apparatus and centrifuge, In the direct loading test, the prototype was Kyungbu high-speed railway tunnel and the scale is 1/10, and lining models were made of concrete. Test conditions included load conditions such as direction, shape and type, lining conditions such as single and double lining, thickness, and reinforcement. In centrifuge model test, the prototype was Seoul subway tunnel and the scale is 1/100, and lining models were made of aluminum and hydrostone. Test conditions included tunnel defects such as thickness shortage. behind cavity and longitudinal cracks, reinforcement methods such as epoxy, grouting and carbon sheet. From these model tests , the characteristics of deformation and failure for tunnel lining were estimated, and the structural behaviors of deformed lining and the effects of repair and reinforcement for tunnel lining were researched.

  • PDF

Self Sensing Reinforcement Combined with Fiber-Optic Sensor and FRP Strip for Structural Reinforcement (구조물 보강용 FRP 판과 광섬유 센서가 결합된 자기감지 보강재)

  • Song, Se-Gi;Seo, Soo-Yeon;Kim, Kang Su
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.123-130
    • /
    • 2019
  • Recently, it is required to develop a monitoring technology that combines an FBG sensor as a means for continuously monitoring whether reinforcing effect of FRP is maintained on FRP reinforced structural members. However, most existing researches focus on the insertion of FBG sensors into bar-shaped FRPs, and there is insufficient study on the details strip-type FRPs combined with FBG sensors. Therefore, in this paper, it is studied to develop a reinforcement in which a FBG sensor is combined with a FRP strip. Especially, combination of FRP and FBG sensor. For this, a series of experiments were performed to find the adhesive strength of fiber-FRP-epoxy joints, the tensile strength of FBG sensor part with reflection-lattice, and the performance depending on the connection method of FRF and FBG sensor. As a result of the study, it was found that a minimum strength of $216.15N/mm^2$ is required for incorporating FBG sensors in FRP using epoxy. It is considered that the adhesion length of epoxy joints should be more than 50mm. When the FBG sensor is attached to the FRP strip as an epoxy, it is considered appropriate to use the complete attachment and the sensor non-attachment method.