• Title/Summary/Keyword: Reinforcement fiber

Search Result 1,114, Processing Time 0.031 seconds

Flexural behavior and a modified prediction of deflection of concrete beam reinforced with a ribbed GFRP bars

  • Ju, Minkwan;Park, Cheolwoo;Kim, Yongjae
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.631-639
    • /
    • 2017
  • This study experimentally investigated the flexural capacity of a concrete beam reinforced with a newly developed GFRP bar that overcomes the lower modulus of elasticity and bond strength compared to a steel bar. The GFRP bar was fabricated by thermosetting a braided pultrusion process to form the outer fiber ribs. The mechanical properties of the modulus of elasticity and bond strength were enhanced compared with those of commercial GFRP bars. In the four-point bending test results, all specimens failed according to the intended failure mode due to flexural design in compliance with ACI 440.1R-15. The effects of the reinforcement ratio and concrete compressive strength were investigated. Equations from the code were used to predict the deflection, and they overestimated the deflection compared with the experimental results. A modified model using two coefficients was developed to provide much better predictive ability, even when the effective moment of inertia was less than the theoretical $I_{cr}$. The deformability of the test beams satisfied the specified value of 4.0 in compliance with CSA S6-10. A modified effective moment of inertia with two correction factors was proposed and it could provide much better predictability in prediction even at the effective moment of inertia less than that of theoretical cracked moment of inertia.

Influence of Organomodified Nanoclay on the Mechanical and Flammability behavior of Jute Fabric/Vinyl Ester Nanocomposites

  • Latif, M.;Prabhakar, M.N.;Nam, Gi-Beop;Lee, Dong-Woo;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.303-309
    • /
    • 2017
  • Organo-montmorillonite (OMMT) has attracted much attention for fiber-reinforced polymer composites as a filler material due to high aspect ratio and low charge density. The present study focused on the fabrication of nanocomposites using Vinyl ester and Jute fabric as matrix and reinforcement respectively. The OMMT was uniformly dispersed in vinyl ester resin at 1, 2 and 3 wt%, loading through high speed mechanical stirrer at room temperature and further nanocomposites were manufactured through vacuum assisted resin infusion (VARI) technique. Effects of OMMT on the mechanical properties of vinyl ester/Jute composites were carefully investigated through tensile, bending and Izod impact tests, which revealed significant improvement in mechanical properties. The morphology of the nanocomposites after tensile test was investigated by SEM which affirmed that OMMT filled nanocomposites has improved interactions with the host matrix than the pure composites. Based on the nature and flame retardancy mechanism, the OMMT slightly improved the flammability property which was clearly explained by horizontal burning test.

Progresses on the Optimal Processing and Properties of Highly Porous Rare Earth Silicate Thermal Insulators

  • Wu, Zhen;Sun, Luchao;Wang, Jingyang
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.527-555
    • /
    • 2018
  • High-temperature thermal insulation materials challenge extensive oxide candidates such as porus $SiO_2$, $Al_2O_3$, yttria-stabilized zirconia, and mullite, due to the needs of good mechanical, thermal, and chemical reliabilities at high temperatures simultaneously. Recently, porous rare earth (RE) silicates have been revealed to be excellent thermal insulators in harsh environments. These materials display attractive properties, including high porosity, moderately high compressive strength, low processing shrinkage (near-net-shaping), and very low thermal conductivity. The current critical challenge is to balance the excellent thermal insulation property (extremely high porosity) with their good mechanical properties, especially at high temperatures. Herein, we review the recent developments in processing techniques to achieve extremely high porosity and multiscale strengthening strategy, including solid solution strengthening and fiber reinforcement methods, for enhancing the mechanical properties of porous RE silicate ceramics. Highly porous RE silicates are highlighted as emerging high-temperature thermal insulators for extreme environments.

Yield enhancement of matrix precursor in short carbon fiber reinforced randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Sharma, Sharad Chandra;Verma, Anil
    • Carbon letters
    • /
    • v.19
    • /
    • pp.57-65
    • /
    • 2016
  • Isroaniso matrix precursor synthesized from commercially available petroleum pitch was stabilized in air. The influence of oxygen mass gain during stabilization on the yield of matrix precursor was studied. Additionally, the influence of pressure on the yield of the stabilized matrix precursor in a real system was studied. The fourier transform infrared spectrometry (FTIR), thermogravimetric analysis (TGA), yield, yield rate, and yield impact were used to check the effect of stabilization and pressure on the yield of the matrix precursor and the end properties of the composite thereafter. The results showed that the yield increased with stabilization duration up to 20 h whereas it decreased for stabilization duration beyond 20 h. Further results showed that the stabilized matrix precursor for a duration of 5 h could withstand almost two-fold greater hot-pressing pressure without resulting in exudation as compared to that of a 1 h stabilized matrix precursor. The enhanced hot-pressing pressure significantly improved the yield of the matrix precursor. As a consequence, the densification and mechanical properties were increased significantly. Further, the matrix precursor stabilized for a duration of 20 h or more failed to provide proper and uniform binding of the reinforcement.

Load Carrying Capacity due to Cracking Damage of Ellipsoidal Inhomogeneity in Infinite Body under Pure Shear and Its Elastic Stress Distributions (전단응력하의 무한체내 타원체불균질물의 균열손상에 따른 하중부하능력과 탄성응력분포)

  • 조영태;임광희;고재용;김홍건
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.87-90
    • /
    • 2001
  • In particle or short-fiber reinforced composites, cracking of the reinforcements is a significant damage mode because the broken reinforcements lose load carrying capacity. This paper deals with elastic stress distributions and load carrying capacity of intact and cracked ellipsoidal inhomogeneities. Three dimensional finite element analysis has been carried out on intact and broken ellipsoidal inhomogeneities in an infinite body under pure shear. For the intact inhomogeneity, as well known as Eshelby(1957) solution, the stress distribution is uniform in the inhomogeneity and non-uniform in the surrounding matrix. On the other hand, for the broken inhomogeneity, the stress in the region near crack surface is considerably released and the stress distribution becomes more complex. The average stress in the inhomogeneity represents its load carrying capacity, and the difference of average stresses between the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The load carrying capacity of the broken inhomogeneity is expressed in terms of the average stress of the intact inhomogeneity and some coefficients. It is found that the broken inhomogeneity with higher aspect ratio still maintains higher load carrying capacity.

  • PDF

Toughening of SiC Whisker Reinforced Al2O3 Composite (SiC 휘스커 강화 Al2O3 복합재료의 고인화)

  • Kim Yon Jig;Song Jun Hee
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.649-654
    • /
    • 2004
  • In this paper, the fracture toughness and mechanisms of failure in a random SiC-whisker/$Al_{2}O_3$ ceramic composite were investigated using in situ observations during mode I(opening) loading. $SiC_{w}/Al_{2}O_3$ composite was obtained by hot press sintering of $Al_{2}O_3$ powder and SiC whisker as the matrix and reinforcement, respectively. The whisker and powder were mixed using a turbo mill. The composite was produced at SiC whisker volume fraction of $0.3\%$. Compared with monolithic $Al_{2}O_3$, fracture toughness enhancement was observed in $SiC_{w}/Al_{2}O_3$ composite. This improved fracture toughness was attributed to SiC whisker bridging and crack deflection. $SiC_{w}/Al_{2}O_3$ composite exhibited typically brittle fracture behavior, but a fracture process zone was observed in this composite. This means that the load versus load-line displacement curve of $SiC_{w}/Al_{2}O_3$ composite from a fracture test may involve a small non-linear region near the peak load.

Effect of Mechanical Restraint due to Steel Microfibers on Alkali-Silica Reaction in Mortars (미세 강섬유의 구속력이 모르타르의 알칼리-실리카 반응에 미치는 영향)

  • Yi, Chong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.577-584
    • /
    • 2007
  • The effect of steel microfibers (SMF) on alkali-silica reaction (ASR) was investigated using two types of reactive aggregates, crushed opal and a pyrex rod of constant diameter. Cracks are less visible in the SMF mortars compared with the unreinforced mortars. Due to crack growth resistance behavior in SMF mortar specimens, the strength loss is eliminated and the ASR products remained well confined within the ASR site. The expansion and the ASR products were characterized by microprobe analysis and inductively coupled plasma (ICP) spectroscopy. The confinement due to SMF resulted in a higher Na and Si ion concentration of the ASR liquid extracted from the reaction site. The higher concentration reduced the ASR rate and resulted in a lower reactivity of the reactive pyrex rods in SMF mortars.

Influence of imperfectly bonded piezoelectric layer with irregularity on propagation of Love-type wave in a reinforced composite structure

  • Singh, Abhishek Kumar;Chaki, Mriganka Shekhar;Hazra, Bristi;Mahto, Shruti
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.325-344
    • /
    • 2017
  • The present paper investigates the propagation of Love-type wave in a composite structure comprised of imperfectly bonded piezoelectric layer with lower fiber-reinforced half-space with rectangular shaped irregularity at the common interface. Closed-form expression of phase velocity of Love-type wave propagating in the composite structure has been deduced analytically for electrically open and short conditions. Some special cases of the problem have also been studied. It has been found that the obtained results are in well-agreement to the Classical Love wave equation. Significant effects of various parameters viz. irregularity parameter, flexibility imperfectness parameter and viscoelastic imperfectness parameter associated with complex common interface, dielectric constant and piezoelectric coefficient on phase velocity of Love-type wave has been reported. Numerical computations and graphical illustrations have been carried out to demonstrate the deduced results for various cases. Moreover, comparative study has been performed to unravel the effects of the presence of reinforcement and piezoelectricity in the composite structure and also to analyze the existence of irregularity and imperfectness at the common interface of composite structure in context of the present problem which serves as a salient feature of the present study.

Postfire reliability analysis of axial load bearing capacity of CFRP retrofitted concrete columns

  • Cai, Bin;Hao, Liyan;Fu, Feng
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.289-299
    • /
    • 2020
  • A reliability analysis of the axial compressive load bearing capacity of postfire reinforced concrete (RC) columns strengthened with carbon fiber reinforced polymer (CFRP) sheets was presented. A 3D finite element (FE) model was built for heat transfer analysis using software ABAQUS. Based on the temperature distribution obtained from the FE analysis, the residual axial compressive load bearing capacity of RC columns was worked out using the section method. Formulas for calculating the residual axial compressive load bearing capacity of the columns after fire exposure and the axial compressive load bearing capacity of postfire columns retrofitted with CFRP sheets were developed. Then the Monte Carlo method was used to analyze the reliability of the axial compressive load bearing capacity of the RC columns retrofitted with CFRP sheets using a code developed in MATLAB. The effects of fire exposure time, load ratio, number of CFRP layers, concrete cover thickness, and longitudinal reinforcement ratio on the reliability of the axial compressive load bearing capacity of the columns after fire were investigated. The results show that within 60 minutes of fire exposure time, the reliability index of the RC columns after retrofitting with two layers of CFRPs can meet the requirements of Chinese code GB 50068 (GB 2001) for safety level II. This method is effective and accurate for the reliability analysis of the axial load bearing capacity of postfire reinforced concrete columns retrofitted with CFRP.

Development of the Strengthening Method of Telegraph Pole using Chemically Prestressed Fiber Reinforcement Polymer (화학적 프리스트레싱에 의한 노후화 전신주 FRP 보강기법 개발)

  • Han, Jae-Won;Hong, Ki-Nam;Han, Sang-Hoon;Woo, Sang-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.501-502
    • /
    • 2009
  • This paper presents a strengthening technique of weakened telegraph pole using an inflating agent to adjust chemical pre-stressing. The strengthening technique increases only resisting capacity and ductility of telegraph but also limited quantity and application ability of FRP. The chemical pre-stressing and the resisting capacity are investigated experimentally. From the results, it is confirmed that it is possible to control the degree of applied pre-stressing by controlling the amount of inflating agent. In addition, the pre-stressing can increase resisting capacity up to three times compared with no pre-stressing.

  • PDF