• Title/Summary/Keyword: Reinforcement corrosion

Search Result 393, Processing Time 0.029 seconds

Characteristics for Reinforcement Corrosion and Chloride Ion Diffusion of High Volume Fly Ash Concrete (하이볼륨 플라이애시 콘크리트의 철근부식 및 염소이온 확산 특성)

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • The purpose of this experimental research is to evaluate the resistance of reinforcement corrosion and chloride ion penetration of high volume fly ash (HVFA) concrete. For this purpose, concrete test specimens were made for various strength level and replacement ratio of fly ash, and then compressive strength and diffusion coefficient for chloride ion of them were measured for 28, 91 and 182 days, respectively. Also, corrosion monitoring by half cell potential method was carried out for the made lollypop concrete test specimens to detect the time of corrosion initiation for reinforcement in concrete. As a result, it was observed from the test results that compressive strength of HVFA concrete was decreased with increasing replacement ratio of fly ash but long-term resistance against reinforcement corrosion and chloride ion penetration of that was increased.

Repair of Seonjingang Bridge in Namhae Highway Route Deteriorated by Chloride Attack (남해고속도로 섬진강교 내염보수공사 시공)

  • Han Bog Kyu;Chi Han Sang;Cheong Hai Moon;Ahn Tae Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.355-358
    • /
    • 2005
  • Corrosion of reinforced concrete structures in marine environment is one of the most important mechanisms of deterioration. Under Korean highway bridge, the time for the steel reinforcement in the concrete to exhibit initial signs of corrosion is within three decades. Therefore, 'SUM JIN' highway bridge, located in a corrosive marine environment on the south of Korea, had been examined the current condition of the steel reinforcement corrosion in concrete by half-cell potentials, chloride contamination of concrete and so on. According to the tests, the protecting film around the reinforcement is deteriorated and corrosion activity developed in tidal zone. The purpose of this paper is to report the effects of 'SUM JIN' highway bridge damaged by chlodide attack and to present the results of repair of 'SUM JIN' highway concrete bridge in domestic marine environment.

  • PDF

Theoretical model to determine bond loss in prestressed concrete with reinforcement corrosion

  • Ortega, Nestor F.;Moro, Juan M.;Meneses, Romina S.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • This paper reviews the mechanical effects produced by reinforcement corrosion of prestressed concrete beams. Specifically, modifications in the bonding of the tendon to the concrete that reduce service life and load bearing capacity are studied. Experimental information gathered from previous works has been used for the theoretical analysis. Relationships between bond stress loss and reinforcement penetration in the concrete, and concrete external cracking were established. Also, it was analysed the influence that has the location of the area affected by corrosion on the loss magnitude of the initial prestress.

A Study on the Reinforcement Corrosion Evaluation of Repair Material and Method for Reinforced Concrete Structure by Long Term Exposure Experiment (장기폭로실험에 의한 철근콘크리트구조물 보수재료$\cdot$공법의 철근부식특성 평가)

  • Kim Young Sun;Lee Eui-Bae;Kim Young Duck;Cho Bong Suk;Kim Jae Hwan;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.197-200
    • /
    • 2005
  • In this study, for the establishment of the performance evaluation methods and the quality control standards of durability recovery method, the quantitative exposure data by long term exposure test under the coast is accumulated and analyzed Investigating and evaluating the result of exposure test at 30 month of exposure age under the coastal environment, carbonation and salt damage are not happened at all but the difference in electric potential are found. Therefore, it is considered that the reinforcement corrosion at replacement with repair material are caused by active-passive corrosion macrocells.

  • PDF

Bond strength modeling for corroded reinforcement in reinforced concrete

  • Wang, Xiaohui;Liu, Xila
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.863-878
    • /
    • 2004
  • Steel corrosion in reinforced concrete structures leads to concrete cover cracking, reduction of bond strength, and reduction of steel cross section. Among theses consequences mentioned, reduction of bond strength between reinforcement and concrete is of great importance to study the behaviour of RC members with corroded reinforcement. In this paper, firstly, an analytical model based on smeared cracking and average stress-strain relationship of concrete in tension is proposed to evaluate the maximum bursting pressure development in the cover concrete for noncorroded bar. Secondly, the internal pressure caused by the expansion of the corrosion products is evaluated by treating the cracked concrete as an orthotropic material. Finally, bond strength for corroded reinforcing bar is calculated and compared with test results.

A Study on the Prediction of Durability of Concrete Structures Subjected to Chloride Attack by Chloride Diffusion Model (염소이온의 확산모델에 의한 염해를 받는 콘크리트 구조물의 내구성 예측연구)

  • 오병환;장승엽;차수원;이명규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.254-260
    • /
    • 1997
  • Chloride-induced corrosion of reinforcement is one of the main factors which cause the deterioration of concrete structures. Durability and service lives of the concrete sturctures should be predicted in order to minimize the risk of corrosion of reinforcement. The objective of this study is to suggest the basis of analytical methods of predicting the corrosion threhold time of concrete structures. Based on the chemistry and physics of chloride ion transport and corrosion process, chloride intrusion with various exposure conditions, variability of diffusivity and transport of pore water in concrete are taken into consideration in applying finite element formulation to the predicion of corrosion threhold time. The effects of main factors on the prediction of chloride intrusion and corrosion threhold time are examined. In addition, after chloride diffusivities of several mixture proportions with different parameters are measured by chloride diffusion test, the exemplary anayses of corrosion threhold time of those mixture proportions are carried out.

  • PDF

On the Implementation of Fuzzy Arithmetic for Prediction Model Equation of Corrosion Initiation

  • Do Jeong-Yun;Song Hun;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1045-1051
    • /
    • 2005
  • For critical structures and application, where a given reliability must be met, it is necessary to account for uncertainties and variability in material properties, structural parameters affecting the corrosion process, in addition to the statistical and decision uncertainties. This paper presents an approach to the fuzzy arithmetic based modeling of the chloride-induced corrosion of reinforcement in concrete structures that takes into account the uncertainties in the physical models of chloride penetration into concrete and corrosion of steel reinforcement, as well as the uncertainties in the governing parameters, including concrete diffusivity, concrete cover depth, surface chloride concentration and critical chloride level for corrosion initiation. The parameters of the models are regarded as fuzzy numbers with proper membership function adapted to statistical data of the governing parameters and the fuzziness of the corrosion time is determined by the fuzzy arithmetic of interval arithmetic and extension principle

Corrosion behavior of concrete produced with diatomite and zeolite exposed to chlorides

  • Gerengi, Husnu;Kocak, Yilmaz;Jazdzewska, Agata;Kurtay, Mine
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.161-169
    • /
    • 2017
  • Chloride induced reinforcement corrosion is widely accepted to be the most frequent mechanism causing premature degradation of reinforced concrete structures. The electrochemical impedance of reinforcing steel in diatomite- and zeolite-containing concrete exposed to sodium chloride was assessed. Chemical, physical and mineralogical properties of three concrete samples (20% diatomite, 20% zeolite, and a reference containing neither) were correlated with corrosion investigations. The steel-reinforced samples were exposed to 3.5% NaCl solution for 500 days, and measured every 15 days via EIS method. Results indicated that porosity and capillary spaces increase the diffusion rate of water and electrolytes throughout the concrete, making it more susceptible to cracking. Reinforcement in the reference concrete was the most corroded compare to the zeolite and the diatomite samples.

Sensitivity analysis of flexural strength of RC beams influenced by reinforcement corrosion

  • Hosseini, Seyed A.;Shabakhty, Naser;Khankahdani, Fardin Azhdary
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.479-489
    • /
    • 2019
  • The corrosion of reinforcement leads to a gradual decay of structural strength and durability. Several models for crack occurrence prediction and crack width propagation are investigated in this paper. Analytical and experimental models were used to predict the bond strength in the period of corrosion propagation. The manner of flexural strength loss is calculated by application of these models for different scenarios. As a new approach, the variation of the concrete beam neutral axis height has been evaluated, which shows a reduction in the neutral axis height for the scenarios without loss of bond. Alternatively, an increase of the neutral axis height was observed for the scenarios including bond and concrete section loss. The statistical properties of the parameters influencing the strength have been deliberated associated with obtaining the time-dependent bending strength during corrosion propagation, using Monte Carlo (MC) random sampling method. Results showed that the ultimate strain in concrete decreases significantly as a consequence of the bond strength reduction during the corrosion process, when the section reaches to its final limit. Therefore, such sections are likely to show brittle behavior.

Resistance to Corrosion of Reinforcing Steel and Critical Chloride Content of High Volume Fly Ash Concrete (하이볼륨 플라이애시 콘크리트의 철근부식 저항성 및 임계 염화물량)

  • Lee, Hyun-Jin;Bae, Su-Ho;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.375-381
    • /
    • 2017
  • Recently, due to the increasing of interest about the eco-friendly concrete, it is being increased to use concretes containing by-products of industry such as fly ash, ground granulated blast furnace slag, silica fume, and etc. Especially, these are well known for improving the resistance to reinforcement corrosion in concrete and decreasing chloride ion penetration. The purpose of this experimental research is to evaluate the resistance to corrosion of reinforcement and critical chloride content of high volume fly ash concrete(HVFAC) which is replaced with fly ash for approximately 50% cement content. For this purpose, corrosion monitoring of reinforcement by half cell potential method was carried out for the cylindrical test specimens that the upper of reinforcement in concrete was exposed to detect the time of corrosion initiation for reinforcement. It was observed from the test result that the the time of corrosion initiation for reinforcement of HVFAC by the accelerated corrosion tests increased 1.2~1.3 times than plain concrete and the critical chloride contents of plain concrete and HVFAC were found to range $0.80{\sim}1.20kg/m^3$, $0.89{\sim}1.60kg/m^3$, respectively.