• Title/Summary/Keyword: Reinforcement condition

Search Result 598, Processing Time 0.033 seconds

Probability-Based Durability Design for Concrete Structure with Crack: Bimodal Distribution of Chloride Diffusion

  • Na, Ung-Jin;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.22-33
    • /
    • 2015
  • Chloride ions in RC (Reinforced Concrete) structures can cause very severe corrosion in reinforcement steel. It is generally informed that chloride penetration can be considerably accelerated by enlarged chloride diffusion due to cracks. These cracks play a role in main routes through which chloride ions penetrate into the concrete, and also lead to steel corrosion in RC structures exposed to chloride attack, such as port and ocean structures. In this paper, field survey including evaluation of crack and chloride concentration distribution in concrete is performed to investigate an effect of crack on chloride diffusion. The service life of cracked concrete exposed to the marine environmental condition is estimated considering the crack effect on chloride diffusion. For this purpose, diffusion coefficients in cracked concrete are obtained based on the field survey. Using the relationship between diffusion coefficients in the cracked concrete and the crack widths, service life of the cracked concrete is predicted in a probabilistic framework. A bimodal distribution with two peaks, consisting of a weighted sum of two normal distributions is introduced to describe chloride diffusion of the concrete wharf with crack.

An Experimental Study on the Creep and Shrinkage Behavior of High-Strength Concrete Members (고강도 콘크리트 부재의 크리프 및 건조수축 특성에 관한 실험적 연구)

  • Oh, Byung Hwan;Um, Joo Yong;You, Seung Un;Cha, Soo Won;Lim, Dong Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.31-40
    • /
    • 1993
  • Many reseachers have performed extensive studies on the creep and shrinkage of concrete. Mechanism of creep and shrinkage however is not quite well-known, especially for high strength concrete. Therefore, the purpose of this study is to explore the shrinkage and creep characteristics of high strength concrete. The main variables investigated include condition of drying, reinforcement and duraton of load. The effects of drying and reinforcements are clarified and compared with various exsiting models. The present study provides useful data for the design and analysis of high stength concrete structures.

  • PDF

Sensing and Interfacial Evaluation of Ni Nanowire Strands/Polymer Composites using Electro-micromechanical Technique (Electro-Micromechanical 시험법을 이용한 Ni Nanowire Strands 강화 고분자 복합재료의 Sensing과 계면 물성 평가)

  • Kim, Sung-Ju;Jung, Jin-Gyu;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.141-144
    • /
    • 2005
  • Sensing and interfacial evaluation of Ni nanowire strands/polymer composites were investigated using Electro-micromechanical technique. Electro-micromechanical techniques can be used as sensing method for micro damage, loading, temperature of interfacial properties. Using Ni nanowire strands/silicone composites with different content, load sensing response of electrical contact resistivity was investigated under tensile and compression condition. The mechanical properties of Ni nanowire strands with different type/epoxy composites were measured using uniformed cyclic loading and tensile test. Ni nanowire strands/epoxy composites showed humidity and temperature sensing within limited ranges, 20 vol% reinforcement. Some new information on temperature and humidity sensing plus loading sensing of Ni nanowire strands/polymer composites could be obtained from the electrical resistance measurement as a new concept of the nondestructive interfacial evaluation.

  • PDF

Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM

  • Arani, Ali Ghorbanpour;Kolahchi, Reza;Esmailpour, Masoud
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.787-800
    • /
    • 2016
  • The aim of the paper is to analyze nonlinear transverse vibration of an embedded piezoelectric plate reinforced with single walled carbon nanotubes (SWCNTs). The system in rested in a Pasternak foundation. The micro-electro-mechanical model is employed to calculate mechanical and electrical properties of nanocomposite. Using nonlinear strain-displacement relations and considering charge equation for coupling between electrical and mechanical fields, the motion equations are derived based on energy method and Hamilton's principle. These equations can't be solved analytically due to their nonlinear terms. Hence, differential quadrature method (DQM) is employed to solve the governing differential equations for the case when all four ends are clamped supported and free electrical boundary condition. The influences of the elastic medium, volume fraction and orientation angle of the SWCNTs reinforcement and aspect ratio are shown on frequency of structure. The results indicate that with increasing volume fraction of SWCNTs, the frequency increases. This study might be useful for the design and smart control of nano/micro devices such as MEMS and NEMS.

A Study on Structural Analysis of Reinforced Longitudinal Rib in Orthotropic Steel Deck Bridge (보강된 세로리브에 의한 강바닥판교의 응력변화 연구)

  • Kong, Byung-Seung;Kim, Min-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.468-475
    • /
    • 2007
  • The Steel deck a structural analysis in head plate form change the objective bridge which it sells it accomplished a detailed structural analysis from the research which it sees and Bulk-head plate it accomplished. The length rib where the fatigue crack which is considerable generally occurs, width rib connection department and the length rib side, the width rib side it compares principal stress in the object and it does to sleep. It applied the grudge element model which it describes consequently after words and a load and a boundary condition and it executed it compared a static test and principal stress. It grasped the stress conduct of the The Steel deck petal which it follows in hand weaving rib affix location and the affix location to sleep in order to analyze a same location Bulk-head the head and comparison considered. From the detailed section which is reinforced with the stress investigation result hand weaving rib of the location which is weak in structural analysis result fatigue crack of form star reinforcement details basic form and Bulk-head the form which is reinforced with the head plate compared to principal stress investigation hour it is judged at the section which separates most.

  • PDF

An Improved Analysis Model for the Ultimate Behavior of Unbonded Prestressed Concrete

  • Cho, Taejun;Kim, Myeong-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.149-157
    • /
    • 2017
  • An innovative analysis method is proposed in this paper for the determination of ultimate resistance of prestressed concrete beams. The proposed method can be applied to simply supported or continuous beams in a unified manner whether structure and external loads are symmetric or not. Through the iterative nonlinear strain compatibility solutions, this method can also be applied to the non-prismatic section/un-symmetrical composite structures under moving load. The conventional studies have used the failure criteria when the strain of concrete reaches 0.003. However compared with bonded case, the value of strain in the reinforcement is much smaller than bonded case, thus, unbonded prestressed cases show compressive failure mode. It is shown that the proposed method gives acceptable results within 5% error compared with the prior experimental results. It can be shown that the proposed method can reach the solution much faster than typical three-dimensional finite element analysis for the same problem. This method is applicable to the existing unbonded prestressed members where deterioration has occurred leading to the reduced ultimate resistance or safety. In all, the proposed procedure can be applied to the design and analysis of newly constructed structures, as well as the risk assessment of rehabilitated structures.

A Study on the Flexural Behavior according to Filling conditions of Beams Members(A Siries) Using High Performance Concrete (고유동성 콘크리트를 이용한 보부재(A시리즈)의 충전상황별 휨거동 연구)

  • 장일영;윤영수;엄주환;송재호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.306-311
    • /
    • 1996
  • This paper persents the flexural behavior of high performance concrete beams having different concrete filling conditions. Three tests were conducted on full-scale beam specimens with design concrete compressive strength of 400 kg/$\textrm{cm}^2$. Different concrete filling conditions were intentionally made such that the first beam specimen was soundly cast to obtain the perfect concrete filling condition. Second beam specimen was cast in such a way that up to the longitudinal tensile reinforcement from the top, good concrete was filled while poor concrete was poured for the bottom part to simulate the poor workamanship, workability and unsatisfactory compaction. Third beam specimens was cast in such a way that up to the neutral axis of the beam section from the top, good concrete was filled while so did for the bottom part as the second beam specimen. The test results were analyzed in terms of load-displacement response, formation of crack, crack width, crack spacing and shift of neutral axis. An evaluation of the ductile response fo three different beam specimens was made in combination with the ultimate load accoding to the three different concrete filling conditions.

  • PDF

A Study of Stability Evaluation for Tunnel at the Fault Zone Crossing (단층대를 통과하는 터널의 안정성확보에 관한 연구)

  • 박인준;최정환;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.105-112
    • /
    • 2001
  • The purpose of this study is to assess the stability of tunnel for a high speed railway crossing the fault zone. The area where the tunnel crossed the fault zone can be unstable during construction and operation. Geotechnical investigations have been conducted to determine an optimum excavation method by obtaining the material properties around the fault zone and to check the stability of the tunnel. For the numerical analysis, the FLAC, numerical analysis code based on finite difference method, was utilized to analyze the behavior of the fault at three points having typical ground conditions. Based on the results of numerical analysis, the combinations of compaction grouting and LW grouting were determined as suitable methods for pre-excavation Improvement of the ground surrounding the tunnel opening. In conclusion, the stability of the tunnel construction for the high speed railway within the fault zone may be obtained by adopting the optimum excavation method and the reinforcement method. The numerical analysis based on FLAC program contains errors caused by assumptions used in numerical analysis, therefore constant monitoring with respect to the change of ground condition and groundwater is highly recommended to minimize the numerical error and the possibility of damage to tunnel.

  • PDF

A Study on Development of Design Chart for Geotextile-reinorced Embankments on Soft Foundations (연약지반상의 토목섬유보강제방의 설계도표개발에 관한 연구)

  • 서인식;허노영
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.173-180
    • /
    • 1998
  • This paper presents the design chart to evaluate the two-demensional stability of geoteztilereinforcement embankments on soft foundations. The potential failure surface in this study is assumed as the logarithmic spiral curves refracted at the boundary of layers. To facilitate the iterative calculations, a program that determines the geoteztile tensile force for geotextilereinforcement embankments was developed. This program can be used for situations with a variety of soil layers and soil types. And it can be also used for a static or seismic condition. A series of calculations has been made for a schematised situation. The results of these computation are shown in design charts. Considering static or seismic load strate, these charts in the preliminary stage of the design provide a reasonable estimate of geoteztile tensile force for geotextile-reinforcement embankments on softs foundations. In the final swage a more detailed calculation can be made by developed programs.

  • PDF

Analysis for Evaluating the Impact of PEVs on New-Town Distribution System in Korea

  • Choi, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.859-864
    • /
    • 2015
  • This paper analyzes the impact of Plug-in Electric vehicles(PEVs) on power demand and voltage change when PEVs are connected to the domestic distribution system. Specifically, it assesses PEVs charging load by charging method in accordance with PEVs penetration scenarios, its percentage of total load, and voltage range under load conditions. Concretely, we develop EMTDC modelling to perform a voltage distribution analysis when the PEVs charging system by their charging scenario was connected to the distribution system under the load condition. Furthermore we present evaluation algorithm to determine whether it is possible to adjust it such that it is in the allowed range by applying ULTC when the voltage change rate by PEVs charging scenario exceed its allowed range. Also, detailed analysis of the impact of PEVs on power distribution system was carried out by calculating existing electric power load and additional PEVs charge load by each scenario on new-town in Korea to estimate total load increases, and also by interpreting the subsequent voltage range for system circuits and demonstrating conditions for countermeasures. It was concluded that total loads including PEVs charging load on new-town distribution system in Korea by PEVs penetration scenario increase significantly, and the voltage range when considering ULTC, is allowable in terms of voltage tolerance range up to a PEVs penetration of 20% by scenario. Finally, we propose the charging capacity of PEVs that can delay the reinforcement of power distribution system while satisfying the permitted voltage change rate conditions when PEVs charging load is connected to the power distribution system by their charging penetration scenario.