• Title/Summary/Keyword: Reinforcement Water

Search Result 473, Processing Time 0.029 seconds

Research on basic mechanical properties and damage mechanism analysis of BFUFARC

  • Yu H. Yang;Sheng J. Jin;Chang C. Shi;Wen P. Ma;Jia K. Zhao
    • Advances in concrete construction
    • /
    • v.16 no.6
    • /
    • pp.277-290
    • /
    • 2023
  • In order to study the mechanical properties of basalt fiber reinforced ultra-fine fly ash concrete (BFUFARC), the effects of ultra-fine fly ash (UFA) content, basalt fiber content, basalt fiber length and water reducing agent content on the compressive strength, splitting tensile strength and flexural strength of the composite material were studied through experimental and theoretical analysis. Also, a scanning electron microscope (SEM) was employed to analyze the mesoscopic structure in the fracture surface of composite material specimens at magnifications of 500 and 3500. Besides, the energy release rate (Gc) and surface free energy (γs) of crack tip cracking on BFUFARC in different basalt fiber content were studied from the perspective of fracture mechanics. Further, the cracking resistance, reinforcement, and toughening mechanisms of basalt fibers on concrete substrate were revealed by surface free energy of BFUFARC. The experimental results indicated that basalt fiber content is the main influence factor on the splitting tensile strength of BFUFARC. In case that fiber content increased from 0 to 0.3%, the concrete surface free energy at the tip of single-sided crack showed a trend of increased at first and then decreased. The surface free energy reached at maximum, about 3.59 × 10-5 MN/m. During the process of increasing fiber content from 0 to 0.1%, GC-2γS showed a gradually decreasing trend. As a result, an appropriate amount of basalt fiber can play a preventing cracking role by increasing the concrete surface free energy, further effectively improve the concrete splitting tensile performance.

Analysis of hydraulic behavior around tunnel after application of cutoff grouting and proposing a method for estimating grouting range (차수그라우팅 적용에 따른 터널주변 수리학적 거동 분석과 그라우팅 적용범위 산정방법의 제안)

  • Joon-Shik Moon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.79-89
    • /
    • 2024
  • Excessive inflow of groundwater during tunnel excavation not only affects the stability and constructability of the tunnel, but is also one of the main causes of ground settlement due to groundwater level drawdown. The most commonly applied measure against excessive groundwater inflow during tunnel excavation in soil or fractured zone is to reduce the ground permeability coefficient by injecting grout material. Generally, the grouting area is assumed to be same as the plastic zone that occurs during tunnel excavation, but injecting grout material in the area of plastic zone is appropriate only for reinforcement grouting. In order to determine the thickness of cutoff grouting, the amount of reduction in the water permeability coefficient due to the application of cutoff grouting must be considered. In this study, a method for estimating the range of cutoff grouting considering the reduction in permeability coefficient was mathematically derived and evaluated through computer numerical analysis.

Experimental Study for Confirmation of Relaxation Zone in the Underground Cavity Expansion (지중 내 공동 확장에 따른 이완영역 확인을 위한 실험적 연구)

  • Kim, Youngho;Kim, Hoyeon;Kim, Yeonsam;You, Seung-Kyong;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.231-240
    • /
    • 2017
  • Recently, there have been frequent occurrences of ground sink in the urban area, which have resulted in human and material damage and are accompanied by economic losses. This is caused by artificial factors such as soil loss, poor compaction, horizontal excavation due to the breakage of the aged sewage pipe, and lack of water proof at vertical excavation. The ground sink can be prevented by preliminary restoration and reinforcement through exploration, but it can be considered that it is not suitable for urgent restoration by the existing method. In this study, a model experiment was carried out to simulate the in-ground cavities caused by groundwater flow for developing non-excavation urgent restoration in underground cavity and the range of the relaxation zone was estimated by detecting the around the cavity using a relaxation zone detector. In addition, disturbance region and relaxation region were separated by injecting gypsum into cavity formed in simulated ground. The shape of the underground cavity due to the groundwater flow was similar to that of the failure mode III formed in the dense relative density ground due to water pipe breakage in the previous study. It was confirmed that the relaxed region detected using the relaxation zone detector is formed in an arch shape in the cavity top. The length ratio of the relaxation region to the disturbance region in the upper part of the cavity center is 2: 1, and it can be distinguished by the difference in the decrease of the shear resistance against the external force. In other words, it was confirmed that the secondary damage should not occur in consideration of the expandability of the material used as the injecting material in the pre-repair and reinforcement, and various ground deformation states will be additionally performed through additional experiments.

Durability and Crack Control of Concrete Using Fluosilicates Based Composite (규불화염계 복합 조성물을 혼입한 콘크리트의 균열제어 및 내구성)

  • Yun, Hyun-Do;Yang, Il-Seung;Kim, Do-Su;Khil, Bae-Su;Han, Seung-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.57-64
    • /
    • 2006
  • The crack presented in concrete structures causes a structural defect, the durability decrease, and external damages etc. Therefore, it is necessary to improve durability through the effort to control the crack. Fluosilicic acid($H_2SiF_6$) is recovered as aqueous solution which absorbs $SiF_4$ produced from the manufacturing of industrial-graded $H_3PO_4$ or HF. Generally, fluosilicates prepared by the reaction between $H_2SiF_6$ and metal salts. Addition of fluosilicates to cement endows odd properties through unique chemical reaction with the fresh and hardened cement. Mix proportions for experiment were modulated at 0.45 of water to cement ratio and $0.0{\sim}2.0%$ of adding ratio of fluosilicate salt based inorganic compound. To evaluate correlation of concrete strength and adding ratio of fluosilicate salt based inorganic compound, the tests were performed about design strength(21, 24, 27 MPa) with 0.5% of adding ratio of fluosilicate salt based inorganic compound. Applications of fluosilicate salt based inorganic compound to reduce cracks resulted from plastic and drying shrinkage, to improve durability are presented in this paper. Durability was evaluated as neutralization, chloride ion penetration depth, freezing thawing resistant tests and weight loss according reinforcement corrosion. It is ascertained that the concrete added fluosilicate salt based inorganic compound showed m ability to reduce the total area and maximum crack width significantly as compared non-added concrete. In addition, the durability of concrete improved because of resistance to crack and watertightness by packing role of fluosilicate salt based inorganic compound obtained and pozzolanic reaction of soluble $SiO_2$ than non-added concrete.

A Proposal of Seismic Failure Probability Estimation Chart of the Korean Small and Medium Sized Earthfill Dams (국내 중소규모 흙댐의 지진 시 파괴확률 산정 도표 제안)

  • Ha, Iksoo;Lee, Soogwun;Kim, Namryong;Lim, Jeongyeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.3
    • /
    • pp.31-38
    • /
    • 2017
  • The purpose of this study is to propose a chart that can easily estimate the seismic failure probability of small and medium sized earthfill dams with little geotechnical information. By considering the existing method and procedure for estimating the seismic failure probability of a dam, the zero seismic failure probability curve, on which the seismic probability is zero regardless of the geotechnical properties of the dam, was determined in the form of hyperbola in the dam height and freeboard ratio plane. It was confirmed that the dam height-freeboard ratio distribution pattern of the Korean small and medium sized dams was shaped like a hyperbola like the zero seismic failure probability curve. Therefore, a estimation chart was constructed in which a number of seismic failure probability contours are represented by a number of hyperbolas at regular intervals in the dam height-freeboard ratio plane. The proposed chart was applied to the calculation of the seismic failure probability of two small and midium sized dams with relatively well-managed geotechnical properties and the validity of the chart was confirmed by comparison with the results obtained by the existing procedures and methods. In the future, the proposed chart is expected to be useful in considering investment priorities for maintenance and reinforcement of small and medium sized dams in preparation for earthquakes.

Developing an improved water discharge anchor & trap bolt to prevent basic salt penetration to harbor structures (해수 염기 침투방지를 위한 성능개선 형 물배출 앵커 및 트랩볼트 개발에 관한 연구)

  • Ock, Jong-Ho;Moon, Sang-Deok;Lee, Hwa-Sun;Shin, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.674-682
    • /
    • 2018
  • Large industrial motors require a large area because of the high risk of shutdown accidents and large industrial accidents due to the lowering of the dielectric strength of the armature windings and overheating problems. Therefore, there is a demand for a large-capacity motor that has small size, light weight, and excellent dielectric strength compared with conventional motors. Superconducting motors have advantages of high efficiency and output power, low size, low weight, and improved stability. This results from greatly increasing the magnetic field generation by using superconductive field coils in rotating machines such as generators and motors. It is very important to design and analyze the cooling system to lower the critical temperature of the wires to achieve superconducting performance. In this study, a field loss analysis and low-temperature heat transfer analysis of the cooling system were performed through the conceptual design of a 100-HP high-temperature superconducting synchronous motor. The field loss analysis shows that a uniform pore magnetic flux density appears when high-temperature superconducting wire is used. The low-temperature heat transfer analysis for gaseous neon and liquid neon showed that a flow rate of 1 kg/min of liquid neon is suitable for maintaining low-temperature stability of the high-temperature superconducting wire.

Studies on Early Life History of the Korean Mandarin Fish, Siniperca scherzeri(Perciformes: Centropomidae) (쏘가리 Siniperca scherzeri 의 초기 생활사에 관한 연구)

  • Lee, Wan-Ok;Jang, Seon-Il;Lee, Jong-Yun
    • Korean Journal of Ichthyology
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • The early history of Korean mandarin fish, Siniperca scherzeri was studied to obtain some information required in aquaculture and reinforcement of natural population. During the period from June 1996 to July 1997, the mature adults of Siniperca scherzeri were collected from the middle Soyang Lake at Puksan - myon, Chunchon - shi, Kangwon - do, Korea. The eggs from females were obtained by injecting HCG or/and GnRH - a and fertilized by dry method in the laboratory. The fertilized eggs, measuring 1.70~2.10 mm in diameter and expanded to 2.20~2.66mm after absorption of water, were globosity, light orange yellow, separative, submergence and had one large oil globules of 0.5~0.7 mm. The blastodisc was formed in 1 hour and cleavage started in 1 hour 30 min. after fertilization, and the intervals of each stage of cleavage was about 50 min. at the water temperature of $21{\sim}24^{\circ}C$. Hatching occurred 131 hours 30 min. after fertilization and newly hatched larvae were 5.86~6.85 mm in total length(TL) and numerous stellate melanophores were distributed on the yolk and abdomen of caudal peduncle. The yolk was almost absorbed and the teeth development. 3 days after hatching, at 6.98~7.60 mm TL. The head spines and the teeth were largely developed and all fins were completely formed and became postlarva stage 15 days after hatching, at 10.10~12.90 mm TL. The body shape and the color pattern were similar to adult, 25 days after hatching, at 15.3~23.8 mm TL. In 5 months after hatching were reached at 154.10~175.02 mm TL and 49.32~82.67 g in body weight.

  • PDF

Basic study of new concept environment-friendly pile foundations with earthquake resistant foundation and lateral reinforcement on rapid-transit railway bridge (고속철도교 기초 내진 및 수평저항성능 보강형 신개념 친환경말뚝 신공법의 실용화 기초연구)

  • SaGong, Myung;Paik, Kyu-Ho;Lim, Hae-Sik;Cho, Kook-Hwan;Na, Kyung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.880-894
    • /
    • 2010
  • The Grout injected precast pile is widely used in rapid-transit railway bridge recently. The existing portland cement of well used filling at injected precast method that with low strength and environmental pollution, unstable in which ground water contamination by cement flow out, ground relaxation by water down, decrease of horizontality resistance and durability and load transfer divide etc. In particular, as in rapid-transit railway bridge need to secure safety from different angle with vibration of high speed train, horizontal force when train stop and earthquake. Works of foundation construction consider to requirements of the times to coal yard green growth. Together, new green foundation method for possible economics and securing of reduce the term of works are material to developments. Therefore, we carried out study that it is using and development new concept environment - friendly filling include durability and earthquake resistance, for secure safety and minimize environment pollution. To achieve this, we carried out difference tests that new green fillings of underwater concrete, high liquidity, high viscosity, early stiffness as compared to existing portland cement fillings. As results, new green filling have outstanding application at precast pile method and micropile construction method with vertical bearing capacity, horizontal bearing capacity and many case. From now on we will be looking forward to development of new environment-friendly foundation method from various further studies.

  • PDF

Estimation of Unconfined Compressive Strength (UCS) of Microfine Cement Grouted Sand (마이크로 시멘트로 그라우팅 된 모래의 일축압축강도 예측)

  • Nam, Hongyeop;Lee, Woojin;Lee, Changho;Choo, Hyunwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.5-15
    • /
    • 2018
  • The unconfined compressive strength (UCS) test through coring is widely used to determine the reinforcement effect of the ground with grouting. However, the UCS test through coring can disturb the ground, is expensive and takes a lot of time to prepare the specimen. In this study, the factors affecting UCS of microfine cement grouted sand are evaluated and an empirical equation of UCS of microfine grouted sand is suggested. It is observed that UCS increases linearly until 28 days, however, the increasing rate of strength decreases sharply after that 28 days. The W/C ratio is dominant factor influencing UCS and UCS increases exponentially with the decrease of water/cement (W/C) ratio. Also, UCS increases linearly with increasing the relative density ranging from 30% to 70% and with decreasing median particle size. However, in case of W/C ratio=1 and K6 ($D_{50}=0.47mm$), UCS is lower than that of K4 ($D_{50}=1.08mm$) and K5 ($D_{50}=0.80mm$) due to filtration effect. Based on the experimental results, the empirical equation of UCS of microfine cement grouted sand can be expressed as the function of median particle size ($D_{50}$), porosity (n) and W/C ratio.

Numerical Analysis of Grout Flow and Injection Pressure Affected by Joint Roughness and Aperture (절리 거칠기와 간극 변화에 따른 그라우트 유동과 주입압에 관한 수치해석적 연구)

  • Jeon, Ki-Hwan;Ryu, Dong-Woo;Kim, Hyung-Mok;Park, Eui-Seob;Song, Jae-Jun
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.82-91
    • /
    • 2010
  • Grouting technology is one of the ground improvement methods used in water controlling and reinforcement of rock mass in underground structure construction. It is necessarily required to find out the characteristics of grout flow through discontinuities in a rock mass for an adequate grout design and performance assessment. Laminar flow is not always applicable in simulating a grout flow in a rock mass, since the rock joints usually have apertures at a micro-scale and the flow through these joints is affected by the joint roughness and the velocity profile of the flow changes partially near the roughness. Thus, the influence of joint roughness and aperture on the grout flow in rough rock joint was numerically investigated in this study. The commercial computational fluid dynamics code, FLUENT, was applied for this purpose. The computed results by embedded Herschel-Bulkley model and VOF (volume of fluid) model, which are applicable to simulate grout flow in a narrow rock joint that is filled with air and water, were well compared with that of analytical results and previously published laboratory test for the verification. The injection pressure required to keep constant injection rate of grout was calculated in a variety of Joint Roughness Coefficient (JRC) and aperture conditions, and the effect of joint roughness and aperture on grout flow were quantified.