• Title/Summary/Keyword: Reinforced steel bar

Search Result 355, Processing Time 0.022 seconds

Behaviour of Lightweight Concrete Slab Reinforced with GFRP Bars under Concentrated Load (집중하중을 받는 GFRP 보강근 경량콘크리트 슬래브의 거동)

  • Son, Byung-Lak;Kim, Chung-Ho;Jang, Heui-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.57-66
    • /
    • 2015
  • This paper is a preliminary study to apply the lightweight concrete slabs reinforced with GFRP (glass fiber reinforced polymer) bars to the bridge deck slabs or some other concrete structures. So, some different behaviors between the conventional steel reinforced concrete slab and the lightweight concrete slab reinforced with GFRP bars were investigated. For this purpose, a number of slabs were constructed and then the three point bending test and numerical analysis for these slabs were performed. The flexural test results showed that the lightweight concrete slabs reinforced with GFRP bars were failed by the shear failure due to the over-reinforced design. The weight and failure load of the GFRP bar reinforced lightweight concrete slabs were 72% and 58% of the steel reinforced concrete slab with the same dimensions, respectively. Results of the numerical analysis for these slabs using a commercial program, midas FEA, showed that the load-deflection curve could be simulated well until the shear failure of the slabs, but the applied loads and the deflections continuously increased even beyond the shear failure loads.

Effect of Reinforcement Layout on Structural Performance of Reinforced Concrete Coupling Beams with High-strength Steel Bar (철근상세에 따른 고강도 철근이 사용된 철근콘크리트 연결보의 구조성능)

  • Jang, Seok-Joon;Jeong, Gwon-Young;Kim, Sun-Woo;Yun, Hyun-Do;Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.95-102
    • /
    • 2017
  • This paper describes the experimental results for the structural performance of full-scale coupling beams with different reinforcement layout (diagonal and horizontal). For the reinforcements of the coupling beams, high-strength steel bars(SD500 and SD600) were used in order to improve workability and economic feasibility. The rigid steel frames and linked joints were used to maintain the clear span length (distance between both shear walls) of the coupling beam during the cyclic loading. Experimental results indicated that the diagonally reinforced coupling beam specimen could exhibit more ductile behavior compared to horizontally reinforced specimen. ACI318-14 code is applicable to design of coupling beam with diagonally reinforcement, however, that is overestimating the strength of horizontally reinforced coupling beam. It is remarkable that effective elastic stiffness values of both reinforcement details coupling beam significantly lees than ASCE 41-13.

Shear Behavior of Slender HSC Beams Reinforced with Stirrups using Headed Bars, High Strength Steels, and CFRP Bars (헤디드 바, 고장력 철근 및 CFRP 바로 전단보강된 세장 고강도콘크리트 보의 전단 거동 평가)

  • Yang, Jun-Mo;Kwon, Ki-Yeon;Choi, Hong-Shik;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.717-726
    • /
    • 2007
  • If conventional reinforcements are used for high-strength concrete (HSC) structures, a large amount of the reinforcement must be required to compensate for the brittleness of HSC and make the best use of HSC. This raises some structural problems such as steel congestion and an increase in self-weight. Therefore, alternative reinforcing materials and methods for HSC structures are needed. In this study, four full-scale beam specimens constructed with HSC (100 MPa) were tested to investigate the effect of the different shear reinforcements on the shear behavior. These four specimens were reinforced for shear stirrups with normal and high strength steels, headed bars, and carbon fiber-reinforced polymer (CFRP) bars, respectively. In addition, steel fibers were added to the HSC in the two of the specimens to observe their beneficial effects. The use of high strength steels resulted in the improvement of the shear capacity since the shear resistance provided by the shear reinforcements and the bond strength were increased. The specimen reinforced with headed bars also showed a superior performance to the conventional steel reinforced specimen due to the considerably high anchorage strength of headed bar. CFRP bars used in this research, however, seemed to be inadequate for shear reinforcement because of the inferior bond capacity. The presence of the steel fibers in concrete led to remarkable improvement in the ductility of the specimens as well as in the overall cracks control capability.

Bond strength prediction of steel bars in low strength concrete by using ANN

  • Ahmad, Sohaib;Pilakoutas, Kypros;Rafi, Muhammad M.;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.249-259
    • /
    • 2018
  • This paper presents Artificial Neural Network (ANN) models for evaluating bond strength of deformed, plain and cold formed bars in low strength concrete. The ANN models were implemented using the experimental database developed by conducting experiments in three different universities on total of 138 pullout and 108 splitting specimens under monotonic loading. The key parameters examined in the experiments are low strength concrete, bar development length, concrete cover, rebar type (deformed, cold-formed, plain) and diameter. These deficient parameters are typically found in non-engineered reinforced concrete structures of developing countries. To develop ANN bond model for each bar type, four inputs (the low strength concrete, development length, concrete cover and bar diameter) are used for training the neurons in the network. Multi-Layer-Perceptron was trained according to a back-propagation algorithm. The ANN bond model for deformed bar consists of a single hidden layer and the 9 neurons. For Tor bar and plain bars the ANN models consist of 5 and 6 neurons and a single hidden layer, respectively. The developed ANN models are capable of predicting bond strength for both pull and splitting bond failure modes. The developed ANN models have higher coefficient of determination in training, validation and testing with good prediction and generalization capacity. The comparison of experimental bond strength values with the outcomes of ANN models showed good agreement. Moreover, the ANN model predictions by varying different parameters are also presented for all bar types.

Pull-Out Properties of Steel Strip Reinforcement with Transverse Steel Bar (지지부재를 설치한 띠형 강판보강재의 인발마찰 특성 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Ju, Jae-Woo;Park, Jong-Beom
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.31-37
    • /
    • 2007
  • A steel strip reinforcement for the reinforced earth structures was recently developed to substitute the existing ribbed steel strip reinforcement. The developed reinforcement consists of the punched steel strip having dimension of 65mm width and 4.5mm thickness and the transverse steel bar for increasing bearing resistance. The punched steel strip has holes of 11mm diameter in every 50cm spacing with 2mm rising around perimeter of the holes. A series of shear friction tests and pull-out tests were carried out to evaluate the friction properties of the developed reinforcement. The results of these tests show that pull-out resistance of the developed reinforcement was significantly increased when the transverse steel bars are installed in the punched steel strip.

  • PDF

Exposed Reinforced Concrete-Filled Steel Tubular (RCFST) column-base joint with high-strength

  • Mou, Ben;Wang, Zian;Qiao, Qiyun;Zhou, Wanqiu
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • The weld quality has always been an important factor affecting the development of exposed CFT column-base joint. In this paper, a new type of exposed RCFST column-base joint is proposed, in which the high strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens, the varying axial force ratio (0, 0.25 and 0.5), were tested under cyclic loadings. In addition, the bending moment capacity, energy dissipation capacity and deformation capacity of column-base joints were clarified. The experimental results indicated that the axial force ratio increases the stiffness and the bending moment and improves the energy dissipation capacity of column-base joints. This is because a large axial force can limit the slip between steel tubular and infilled concrete effectively. The specimens show stable hysteresis behavior.

Measurements and Data Interpretation for the Detection of Steel Bars and Delamination inside Concrete (콘크리트내의 철근 및 공동탐사를 위한 측정과 분석)

  • Rhim, Hong-Chul;Park, Ki-Joon;Lee, Soong-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.305-313
    • /
    • 2000
  • To determine detection capabilities of locating steel bars and delamination inside concrete, commercially available nondestructive testing (NDT) equipments have been tested. The equipments include two radar systems and two electromagnetic method systems. The inclusions are a 19 mm diameter steel bar and 50 mm thick delamination embedded at different cover depths from the surface of concrete specimens. For the steel bar, attempts were made to determine the size of the bars by changing the diameter of the bars. A sample result of measuring horizontal spacing between doubly reinforced bars is presented in this paper. Experimental results on various measurement cases are discussed. Application of numerical modeling technique for the simulation of radar measurements and improved output display of radar measurements are also presented.

  • PDF

Performance evaluation of different shapes of headed bars in steel fiber reinforced concrete

  • Sachdeva, Payal;Danie Roy, A.B.;Kwatra, Naveen
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.387-396
    • /
    • 2021
  • The behavior of headed bars in concrete is investigated through 108 pullout tests having an embedment depth of eight times the bar diameter in the M20 concrete mix. Headed bars are designed based on ASTM A970-16 and ACI 318-19 recommendations. The primary parameters used in this study are the steel bar diameter, the steel fibers percentage, and the head shapes. Three failure modes namely, Steel, Concrete-Blowout & Pull-Through failure have been observed. Based on load-deflection curves which are plotted to investigate the bond capacity of headed bars, it is observed that the circular-headed bars have displayed the highest peak load. The comparative analysis shows the smaller differences in the ultimate bond strength between MC2010 (0.89-2.26 MPa) and EN 1992-1-1 (2.32 MPa) as compared to ACI-318-19 (11-22 MPa) which is due to the absence of embedment depth and peak load factor in MC2010 and EN 1992-1-1 respectively.

Review of design parameters for FRP-RC members detailed according to ACI 440.1R-06

  • Jnaid, Fares;Aboutaha, Riyad
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.105-121
    • /
    • 2013
  • This paper investigates the parameters that control the design of Fiber Reinforced Polymer (FRP) reinforced concrete flexural members proportioned following the ACI 440.1R-06. It investigates the critical parameters that control the flexural design, such as the deflection limits, crack limits, flexural capacity, concrete compressive strength, beam span and cross section, and bar diameter, at various Mean-Ambient Temperatures (MAT). The results of this research suggest that the deflection and cracking requirements are the two most controlling limits for FRP reinforced concrete flexural members.

Numerical Analysis of Reinforce Concrete Structures Using Axial Deformation Link Elements (축방향 변형 요소를 이용한 RC 부재의 해석적 연구)

  • 신승교;허우영;임윤묵;김문겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.475-478
    • /
    • 1999
  • A numerical tool for predicting the behavior of reinforced concrete structures under uniaxial loads is proposed. Concrete is considered as quasi-brittle material, and for a reinforcing bar, an elastic-perfectly plastic constitutive relationship is adopted. In this study, the behavior of reinforced concrete according to the interface properties between the concrete and steel is analyzed. Comparisons between the numerical predictions and the experimental results show good agreements in the load-deflection behaviors and ultimate loads of reinforced concrete structures.

  • PDF