• Title/Summary/Keyword: Reinforced soil mixture

Search Result 25, Processing Time 0.026 seconds

Physical properties of Reinforced soil Mixture powder (보강혼합토분의 물리적 특성)

  • 이상호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.125-132
    • /
    • 2000
  • This study was performed to evaluate the physical properties of reinforced soil mixture powder. Soil sample was prepared by passing into the standard sieve of No. 200 and reinforcement materials were calcium carbonate, quicklime and portland cement. Fineness, setting time, and compressive strength test for reinforced soil mixture powder were performed and analyzed to investigate their physical properties. The main results were summarized as follow. The compressive strength of soil mixture powder itself and most reinforced was reinforced according to increasing in the mixture rate of reinforcement and the rate of increase was remarkably higher in the cement reinforced soil moisture powder. It was appeared that the early compressive strength is considering higher in the cement reinforced soil moisture powder with 2% of moisture rate of accelerator.

  • PDF

Physical Properties of Reinforced Soil-Mixture Powder (보강혼합토분의 물리적 특성)

  • 이상호;차현주;김철영;장병욱
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.336-340
    • /
    • 1999
  • This study was performed to evaluate the physical properties of reinforced soil-mixture powder. Soil was used to be powder that passed by the No. 200 mech and the reinforcement as calcium carbonate, quicklime and portland cement used for this study to improve soil. We resulted from fineness , setting time, and compressive strength test of reinforced soil-mixture powder. We've got the two conclusions . The first , in case that we were used reinforced soil-mixture powder included some portland cement, the higher the mixture rates of the reinforcement , the wider the difference theoretical data with experimental data. The second, the setting time of reinforced soil-mixture powder is faster than soil powder itself and the reinforcement for promoting strength was proved that calcium carbonate was proper than others if we compared it with other reinforcment.

  • PDF

A Study for Characteristics of Geofiber Reinforced Soil System Practiced on Stone Gabion Bank of River (하천 돌망태 호안에 적용된 토목섬유보강토공법의 녹화 특성)

  • Jeong, Dae-Young;Kim, Jae-Hwan;Shim, Sang-Ryul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.6
    • /
    • pp.81-90
    • /
    • 2008
  • Recently, geofiber(polyester) reinforced soil was added on soil-seed mixture spray to control erosion and to improve vegetation growth on rocky slope sites. This research was conducted to compare vegetation effects and soil hardness on three types of soil-seed mixture spray on stone gabion river bank [A type : soil-seed mixture spray underlying 30cm thick sand with geofiber(geofiber reinforced soil system), B type : soil-seed mixture spray underlying 30cm thick sand without geofiber, C type : soil-seed mixture spray]. Evaluation were made concerning vegetation coverage, soil hardness and moisture content. The results of this study showed that A type system was effective for the growth of vegetation and soil hardness when compareed to B type and C type. A type and B type showed higher covering rate than C type on stone gabion river bank, and especially A type showed the highest covering rate. Soil hardness and water content were high on A type vegetation system compared to B type and C type. We noted that high soil hardness and high moisture content with geofiber(geofiber reinforced soil system) were effective both to control erosion from water current impact and to be high coverage and species of vegetation on stone gabion river bank.

A Case study on reinforced retaining wall backfilled by soil cement (쏘일시멘트 보강토옹벽 사례 연구)

  • Lee, Myung-Jae;Jang, Ki-Soo;Lee, Jin-Hwan;Paik, Min-Cheol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.985-994
    • /
    • 2004
  • The application of the reinforced retaining wall has increased in the last 10 years in Korea. The height of reinforced wall is generally limited to less than 15m. It has been reported that the reinforced wall higher than 10m should have higher strength reinforcement or should reduce the lateral earth pressure of the reinforced wall to secure the stability of the wall. In this study, the reinforced retaining wall was constructed 14m high, backfilled by a mixture of soil and cement and instrumented on the reinforcement elements. The instrumented reinforced wall was monitored during and after construction. Field monitoring result shows that a backfill by a mixture of soil and cement reduced the tensile stress developed on the reinforcing elements and the reinforced wall backfilled by a mixture of soil and cement performed successful.

  • PDF

Variation of Unit Weight and Compressive Strength by Long-Term Dry Shrinkage of Reinforced Soil Mixture (장기적 건조수축에 의한 보강혼합토의 단위 중량 및 압축강도 분석)

  • 이상호;차현주;장병욱
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.90-97
    • /
    • 2000
  • In this study, the variation of unit weight and unconfined compressive strength were investigated, calcium carbonate, quicklime, portland cement, 19mm length monofilaments and fibrillated fiber were used as reinforcement materials. And calcium chloride was added to cement and calcium carbonate reinforced soil mixture in order to accelerate setting and hardening speed. It appears that unit weight is highest in calcium carbonate reinforced soil mixture with mixing rate of 9%. According to increasing the amount of fiber in soil mixture, the unit weight decreased. It shows that the more the amount of monofilament fiber is added in soil mixture, the higher the compressive strength is, but the compressive strength is decreased in fibrillated fibrillated fiber added soil mixture with more than 1.0% of mixing rate.

  • PDF

Compressive Creep Properties of Reinforced Soil Mixture (보강혼합토의 압축 크리프 특성)

  • 이상호;차현주;김철영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.6
    • /
    • pp.115-123
    • /
    • 2002
  • This study was performed to provide basic data for development and construction of reinforced soil wall that mixed with reinforcements such as calcium carbonate, monofilament fiber. In order to determine proper moisture content and mixing ratio by weight of reinforcement, Poisson's ratio and compressive strength tests for sandy soil had been conducted. Model tests for long-term behavior of reinforced soil wall were carried out to investigate the effect of reinforcement during loads and under static loads. The results of creep and model tests for sandy soil compared with clayey soil. Reinforced sandy soil mixed with calcium carbonate and cement showed brittle rupture by shear but that of mixed with monofilament fiber showed ductile rupture due to the tension force of fiber. It was shown that when age increased, creep strain of reinforced soil under sustained load approached constant values.

Variations of Density and Strength for Reinforced Soil Mixture by Long-Tern Dry Shrinkage (장기적 건조수축에 의한 보강혼합토의 밀도 및 강도 변화)

  • 이상호;차현주;장병욱;박영곤
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.239-244
    • /
    • 1999
  • In this study , the variation of dry density and unconfined compressive strength were investigated, calcium carbonate, quicklime, portland cement, 19mm monofilaments and fibrilllated fibers were used as reinforcement materials. And calcium chloride was added to cement and calcium carbonate reinforced soil mixture in order to accelerate setting and hardening speed. It appears that dry density is highest in calcium carbonate reinforced soil mixture with 9% of mixing rae. According to increasing the amount of fibers, in soil mixture , the dry density decreased. The more the amount of monofilament fibers is the higher the compressive strength. But the compressive strength is decreased in fibrrillated fiber added soil mixture with more than 1.0% of mixing rate.

  • PDF

Strength Characteristic of Waste Fishing Net-added Lightweight Soil Considering Glue Treatment (본딩효과를 고려한 폐어망 보강 경량토의 압축강도 특성)

  • Yun, Dae-Ho;Kim, Yun-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.39-45
    • /
    • 2012
  • This paper investigates the strength characteristics and stress-strain behaviors of waste fishing net (WFN)-added lightweight soil. The lightweight soil, which consisted of dredged soil, crumb rubber, and cement, was reinforced with WFN in order to increase its shear strength. Glue treated WFN was also added to lightweight soil to improve the interlocking between the soil mixture and WFN. Three kinds of test specimens were prepared: unreinforced lightweight soil, reinforced lightweight soil without glue treatment, and reinforced lightweight soil with glue treatment. Several series of laboratory tests were carried out, including flow value tests, unconfined compression tests, and SEM analyses. From the experimental results, it was found that the peak strength of the reinforced lightweight soil with glue treatment was increased by the increased interlocking between the soil mixture and WFN, which was induced from the bonding effect. The stress-strain relation of the reinforced lightweight soil, irrespective of the glue treatment, showed a more ductile behavior than that of the unreinforced lightweight soil.

Experimental Study on Mechanical Properties of Monofilament-reinforced Bottom Ash Mixture for Recycling Dredged Soil (준설토를 이용한 단섬유 보강 Bottom Ash 혼합 경량토의 역학적 특성에 관한 실험적 연구)

  • Kim, Yun-Tae;Han, Woo-Jong
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.101-110
    • /
    • 2008
  • This paper investigates the mechanical characteristics of monofilament-reinforced bottom ash mixtures for recycling dredged soil. Reinforced bottom ash mixture is a lightweight soil added with monofilament in order to increase its shear strength. Test specimens were fabricated by various mixing conditions including monofilament content, its length and its diameter. Then several series of unconfined compression tests and direct shear tests were performed to investigate mechanical characteristics of reinforced lightweight soil. The experimental results indicated that stress-strain behaviors of reinforced lightweight soil were strongly influenced by mixing conditions of monofilament content, its length and diameter. The compressive strength of reinforced lightweight soil generally increased by adding monofilament. In this test, the maximum increase in compressive strength was obtained at 0.5% content and 4cm length of monofilament. These results were similar to those of direct shear tests. The unconfined compressive strength of reinforced lightweight soil with monofilament of 0.25mm in diameter was greater than that of reinforced lightweight soil with monofilament of 0.5mm in diameter.

Comparison of Mechanical Characteristics of Fiber-Reinforced Lightweight Soils (섬유보강 혼합경량토의 역학적 특성 비교)

  • Kim, Yun-Tae;Han, Woo-Jong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.51-58
    • /
    • 2008
  • The objective of this study was to investigate the mechanical characteristics of fiber-reinforced lightweight soil using waste fishing net or monofilament for recycling both dredged soils and bottom ash. Reinforced lightweight soil consists of dredged soil, cement, air foam, and bottom ash. Waste fishing net or monoiament was added the mixture in order to increase the shear strength of the lightweight soil. Test specimens were fabricated with various mixing conditions, including waste fishing net content and monofilament content. Several series of unconfined compression tests and direct shear tests were carried out. From the experimental results, it was found that the unconfined compressive strength, as well as the stress-strain behavior of reinforced lightweight soil was strongly influenced by mixing conditions. In this study, the maximum increase in shear strength was obtained with either a 0.5% content of monofilament or 0.25% waste fishing net. The unconfined compressive strength of reinforced lightweight soil with monofilament was greater than that of reinforced lightweight soil with waste fishing net.