• Title/Summary/Keyword: Reinforced sand

Search Result 228, Processing Time 0.021 seconds

Influence of dual layer confinement on lateral load capacity of stone columns: An experimental investigation

  • Akash Jaiswal;Rakesh Kumar
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.567-581
    • /
    • 2023
  • Enhanced vertical load capacity of the ground reinforced with the stone columns drew great attention by the researchers as it deals with many of the geotechnical difficulties associated with the weak ground. Recently, it has been found that the stone columns are also prone to fail under the shear load when employed beneath the embankments or the foundations susceptible to lateral loads. In this study, the effect of various encasement conditions on the lateral deflection of stone columns is investigated. A method of dual layers of encasement has been introduced and its the effect on lateral load capacity of the stone columns has been compared with those of the single encased stone column and the un-encased stone columns. Large shear box tests were utilised to generate the shear deformation on the soil system under various normal pressure conditions. The stiffness of the soil-stone column combined system has been compared for various cases of encasement conditions with different diameters. When subjected to lateral deformation, the encased columns outperformed the un-encased stone columns installed in loose sand. Shear stress resistance is up to 1.7 times greater in dual-layered, encased columns than in unencased columns. Similarly, the secant modulus increases as the condition changes from an unencased stone column to single-layer encasement and then to dual-layer encasement, indicating an improvement in the overall soil-stone column system.

Behavior of GGBS concrete with pond ash as a partial replacement for sand

  • Maheswaran, J.;Chellapandian, M.;Kumar, V.
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.233-242
    • /
    • 2022
  • An attempt is made to develop an eco-friendly concrete with ground granulated blast furnace slag (GGBS) and pond ash as partial replacement materials for cement and fine aggregate, respectively without compromising the strength and durability. Sixteen concrete mixes were developed by replacing cement and fine aggregate by GGBS and pond ash, respectively in stages of 10%. The maximum replacement levels of cement and fine aggregates were 50% and 30% respectively. Experimental results revealed that the optimum percentage of GGBS and pond ash replacement levels were 30% and 20% respectively. The optimized mix was used further to study the flexural behavior and durability properties. Reinforced Concrete (RC) beams were cast and tested under a four-point bending configuration. Also, the specimens prepared from the optimized mix were subjected to alternate wet and dry cycles of acid (3.5% HCl and H2SO4) and sulphate (10% MgSO4) solutions. Results show that the optimized concrete mix with GGBS and pond ash had a negligible weight loss and strength reduction.

Strength and CO2 Reduction of Fiber-Reinforced Cementitious Composites with Recycled Materials (자원순환형 재료를 사용한 섬유보강 시멘트 복합체(FRCCs)의 강도 및 CO2 저감에 관한 연구)

  • Lee, Jong-Won;Kim, Sun-Woo;Park, Wan-Shin;Jang, Young-Il;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.379-387
    • /
    • 2017
  • The objective of this study is to develop sustainable PVA fiber-reinforced cementitious composites (FRCCs) that could exhibit comparable strength level to normal PVA FRCCs with no recycled materials. To evaluate mechanical properties of the FRCCs, compressive, flexural and direct tensile tests were conducted. In addition to the test, to calculate amount of carbon dioxide ($CO_2$) emission at the stage of manufacturing the FRCCs, life cycle inventory data base (LCI DB) were referenced from domestic and Japan. From the test results, the mechanical properties such as compressive, flexural and direct tensile strengths were decreased as the replacement ratio of recycled materials increased. And it was determined that the amount of $CO_2$ emission was reduced for the specimens with higher water-binder ratio (W/B) and replacement ratios. It was also found that binder intensity ($B_i$) value was higher as replacement ratio of fly ash (FA) increased. This result means that larger amount of FA is need to deliver one unit of a given performance indicator (1 MPa of strength) of FRCCs compared to that of ordinary portland cement (OPC). As a result, it could be concluded that FRCCs with W/B 45% replaced by FA 25% and recycled sand (RS) 25% is desirable for both target performance and $CO_2$ emission.

Effects of Nanoparticles on the Fracture Toughness of Cement Mortar (나노 입자가 시멘트 모르타르의 파괴인성치에 미치는 영향)

  • Seung Won Choi;Cho Won Baek;Seon Yeol Lee;Van Thong Nguyen;Dong Joo Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.332-340
    • /
    • 2023
  • This study investigated the effects of nanoparticles on the fracture toughness of cement mortar. Three-point bending tests, compressive tests, and slump tests were conducted on cement mortars reinforced with carbon nanotubes(CNTs), nanosilica(NS), and nano calcium carbonate(NC), respectively. Cement mortar with a water-to-cement ratio and a sand-to-cement ratio of 0.45 and 1.5, respectively, and reinforced with 0 and 2 vol.% of 19.5 mm steel fibers, respectively, was used. Reinforcement with nanoparticles partially improved the fracture toughness and compressive strength of the cement mortar. However, in the case of cement mortar reinforced with steel fibers, the reinforcement with nanoparticles was found to reduce the flowability of the mortar, adversely affecting the dispersion of steel fibers, and ultimately leading to a decrease in fracture toughness, contrary to the intended enhancement. Additional research is needed to improve the decrease in mortar fluidity caused by the reinforcement with nanoparticles.

A study on adhesion properties between composite material and aluminum according to the physical surface treatment technique (물리적 표면처리 기법에 따른 복합소재 및 알루미늄간 접합특성 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.334-339
    • /
    • 2020
  • In this study, the adhesion properties between aluminum and composite materials, composite materials, and composite materials were compared according to the physical surface treatment to improve mechanical bonding at the bonding surface when considering carbon fiber and glass fiber-reinforced composite materials. Bonded specimens were classified into the type of base material and the surface treatment method of the bonding surface. Sandpaper, sandblasting, and plasma were applied as physical surface treatment methods. The bonded specimen was prepared as a single lap joint test specimen. An experiment to measure the lap shear strength was conducted, and the results were compared. The experimental results confirmed that the mechanical abrasion and sandblasting treatment improved the lap shear strength approximately 4 to 5 fold compared to the general specimen without physical surface treatment. In plasma treatment, the experiment was conducted by defining the respective plasma output and treatment time as follows: 150 W and 5 minutes, 150 W and 10 minutes, and 300 W and 3 minutes. Moreover, the lap shear strength results were similar to the previous mechanical surface treatments. On the other hand, the effect on the adhesion properties was small, depending on the plasma treatment conditions.

Characteristics of Bearing Capacity of Soft Ground Reinforced by Vertical Mat (연직 매트로 보강된 연약지반의 지지력 특성)

  • Shin, Eun-Chul;Lee, Gil-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.83-90
    • /
    • 2012
  • Generally, the effect of the cement deep mixing method on the improvement of clay ground is far greater than the effect of physical improvement. Although it leads to great improvement strength in the initial stage, there are not many constructional precedents in Korea and it is hard to manage quality according to the cement-clay mixing method. In order to figure out the strength characteristics according to the mixing ratio of cement, sand, and clay and the improvement characteristics of weak ground according to the forms of the specimens to be improved, marine clay was used in this study to conduct the uniaxial compression test and soil bin model test. The test piece specimens for the uniaxial compression test were mixed with sand in a fixed ratio with the criterion of the water cement ratio. The cement was mixed with clay in the ratios of 10%, 20%, 30%, and 40% to the clay weight. The moisture content of the soil ground was made in the ratios of 40%, 60%, and 80%. The test piece specimens went through curing by moistening for 7, 14, and 28 days and underwent the uniaxial compression test according to the curing period. For the bearing test, the soil bin models were made and the ground improved in the Mat type was formed. After that, the bearing strength was compared in this study according to the improvement ratio and analyzed the intervening effect between the walls of the improved specimens.

Experimental Study on Loading Capacity of SY Corrugated Steel Form for RC Beam and Girder (SY 비탈형 보거푸집의 내하성능에 관한 실험적 연구)

  • Bae, Kyu-Woong;Boo, Yoon-Seob;Hwhang, Yoon-Koog;Shin, Sang-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.32-39
    • /
    • 2021
  • Recently, necessities of steel form for reinforced concrete beam and girder have been emphasized in building structures for the reduction of the construction period and the labor cost. SY Beam was developed for the these purposes and is roll-formed using thin steel plate. On this research, we tried to evaluate and verify the performance and behavior of SY Beam under construction loading stage as like pouring in situ concrete. For the standard shape of SY beam, structural modelling with various steel thicknesses has carried out using MIDAS GEN program. From results of modelling, the width and height of SY Beam were determined 600mm and 400mm respectively. For 3 SY Beams, the loading experiment was performed to measure vertical and horizontal displacement under stacking sand, concrete block, and bundle of rebar. As a result, the vertical deflection showed a tendency to decrease as the thickness increased. In the horizontal displacement, the trend according to the thickness was not clearly observed. From the evaluation on the loading experiment, it is considered that the SY Beam can secure both workability and structural safety. In particular, the SY Beam(1.2mm) hardly generates horizontal displacement, so it has excellent load-bearing capacity. So, we judged that the SY Beam with 1.2mm steel plate has excellent performance and consider to be immediately commercially available.

Soil Arching in Embarikments Suppoyed by Piles with Geosynthethics (말뚝과 토목섬유로 지지된 성토지반의 아칭효과)

  • Hong, Won-Pyo;Lee, Jae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.53-66
    • /
    • 2007
  • A series of model tests were performed to investigate the soil arching effect in embankments supported by piles with geosynthetics. In the model tests, model piles with isolated cap were inserted through the holes in a steel plate, which could be operated up and down. Then geosynthetics was laid on the pile caps below sand fills. The settlement of soft ground was simulated by lowering the plate. As the plate was lowered, the soil arching was mobilized in the embankments. The deformation of both the sand fills and geosynthetics were captured by camera. Also the loads acting on pile cap and the tensile strain of geosynthetics were monitored by data logging system. Model tests showed that the embankment loads transferred on pile cap by soil arching Increased rapidly with settlement of the soft ground. In case of the absence of geosynthetics, the loads acting on pile caps dropped to residual value after peak value, whereas loads on pile caps gradually increased until constant value in case of geosynthetic-reinforced. This illustrated that reinforcing with the geosynthetics has a good effect to restrain the settlement of embankments. Also, the deformation shape of geosynthetics between pile caps was circular. The embankment loads transferred on pile caps can be estimated by considering both soil arching and tensile strain of geosynthetics in embankments supported by piles with geosynthetics.

Effect of Recycled Fine Aggregates and Fly Ash on the Mechanical Properties of PVA Fiber-Reinforced Cement Composites (순환잔골재 및 플라이애시가 PVA 섬유보강 시멘트 복합체의 역학적 특성에 미치는 영향)

  • Nam, Yi-Hyun;Park, Wan-Shin;Jang, Young-Il;Yun, Hyun-Do;Kim, Sun-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.149-157
    • /
    • 2017
  • As the amount of construction wastes increase, reuse of recycled materials is being considered in research areas. While there are many experimental investigations focusing on development of mortar and concrete using the recycled materials, the studies regarding the fiber-reinforced cement composites (FRCCs) using recycled materials are still limited. In this paper, an experimental attempt has been made to investigate the effect of recycled fine aggregates and fly ash on the mechanical properties of PVA FRCCs. The cement and natural sand were respectively replaced by fly ash and recycled fine aggregates at two content levels, 25% and 50%. Ten types of PVA FRCCs mixes were fabricated and tested to investigate the flexural, compressive and direct tensile behaviors. The test results show that flexural, compressive and direct tensile strength were decreased with increase in fly ash content at all ages. In particular, flexural, compressive and direct tensile strengths of specimens, containing 50% recycled fine aggregates and 50% fly ash, showed the lowest values. The modulus of elasticity of specimens showed similar trend to the 28-day compressive strength. Poisson's ratio was increased with increase in fly ash and recycled fine aggregates content.

A Study of Blasting Demolition by Scaled Model Test and PEC2D Analysis (축소모형실험 및 PFC2D해석에 따른 발파해체 거동분석)

  • 채희문;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.54-68
    • /
    • 2004
  • In this study, scaled model tests were performed on blasting demolition of reinforced concrete structures and the experimental results were analyzed in comparison with the results of numerical analysis. The tests were designed to induce a progressive collapse, and physical properties of the scaled model were determined using scale factors obtained ken dimension analysis. The scaled model structure was made of a mixture of plaster, sand and water at the ratio determined to yield the best scaled-down strength. Lead wire was used as a substitute for reinforcing bars. The scaled length was at the ratio of 1/10. Selecting the material and scaled factors was aimed at obtaining appropriately scaled-down strength. PFC2D (Particle Flow Code 2-Dimension) employing DEM (Distinct Element Method) was used for the numerical analysis. Blasting demolition of scaled 3-D plain concrete laymen structure was filmed and compared to results of numerical simulation. Despite the limits of 2-D simulation the resulting demolition behaviors were similar to each other. Based on the above experimental results in combination with bending test results of RC beam, numerical analysis was carried out to determine the blasting sequence and delay times. Scaled model test of RC structure resulted in remarkably similar collapse with the numerical results up to 900㎳ (mili-second).