• Title/Summary/Keyword: Reinforced ground

Search Result 742, Processing Time 0.033 seconds

A Comparative Case Study of 2016 Gyeongju and 2011 Virginia Earthquakes (2016년 경주지진과 2011년 미국 버지니아지진에 대한 비교 연구 및 사례 분석)

  • Kang, Thomas H.K.;Jeong, Seung Yong;Kim, Sanghee;Hong, Seongwon;Choi, Byong Jeon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.443-451
    • /
    • 2016
  • A Gyeongju earthquake in the magnitude of 5.8 on the Richter scale (the moment magnitude of 5.4), which was recorded as the strongest earthquake in Korea, occurred in September 12, 2016. Compared with the 2011 Virginia earthquake, the moment magnitude was slightly smaller and its duration was 3 seconds, much shorter than 10 seconds of the Virginia earthquake, resulting in relatively minor damage. But the two earthquakes are quite similar in terms of the overall scale, unexpectedness, and social situation. The North Anna Nuclear Power Plant, which is a nuclear power plant located at 18 km away from the epicenter of the Virginia earthquake, had no damage to nuclear reactors because the reactors were automatically shut down as the design basis earthquake value was exceeded. Ground accelerations of the 2016 Gyeongju earthquake did not exceed the threshold value but the manual shutdown was carried out so that Wolsong Nuclear Power Site was not damaged. Damaged historic homestead house and masonry structures due to the Virginia earthquake have been repaired, reinforced, and rebuilt based on a long-term earthquake recovery project. Likewise, it will be necessary to carefully carry out an earthquake recovery planning program to improve overall seismic performance and to reconstruct the historic buildings and structures damaged as a result of the Gyeongju earthquake.

Seismic performance evaluation of Pier-Shafts system with multi-layered soil (다양한 지반층을 갖는 Pier-Shafts 시스템의 내진성능평가)

  • Jang, Sung-Hwan;Nam, Sang-Hyeok;Song, Ha-Won;Kim, Byung-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.69-72
    • /
    • 2008
  • The so-called Pier-Shafts system which consists of the continuous column and shaft is often used to support the highway bridge structure because of advantages in easy construction and low cost. In the earthquake region, the Pier-Shafts system undergoes large displacements and represents a nonlinear behavior under the lateral seismic loading. The soil-pile interaction should be considered for more accurate analysis of the Pier-Shafts system. In this study, a transverse response of a reinforced concrete Pier-Shafts system inside multi-layered soil medium is predicted using a finite element program which adopts an elasto-plastic interface model for the interface behavior between the shaft and the soil. Then, seismic analysis is performed to evaluate the performance of Pier-Shafts system under strong ground motion and their results are verified with experimental data.

  • PDF

Nonlinear Seismic Analysis of Hollow Cast-in-place and Precast RC Bridge Columns with Triangular Reinforcement Details (삼각망 철근상세를 갖는 현장타설 및 조립식 중공 철근콘크리트 교각의 비선형 지진해석)

  • Kim, Tae-Hoon;Ra, Kyeong-Woong;Lee, Jae-Hoon;Shin, Hyun Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.713-722
    • /
    • 2016
  • The goal of this study was to assess the seismic performance of hollow cast-in-place and precast reinforced concrete bridge columns with triangular reinforcement details. The developed material quantity reduction details are economically feasible and rational, and facilitate shorter construction periods. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. The used numerical method gives a realistic prediction of seismic performance throughout the input ground motions for several hollow column specimens investigated. As a result, triangular reinforcement details were designed to be superior to the existing reinforcement details in terms of required seismic performance.

Geophysical Explorations for Safety Analysis of Bangeosan-Maaebul(Stone Relief Bhaisajyaguru triad at Mt. Bangeosan) (방어산 마애여래입상의 안전진단을 위한 지구물리탐사)

  • O, Seon-Hwan;Seo, Man-Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.11-20
    • /
    • 2001
  • Seismic refraction and electrical resistivity surveys were conducted in Bangeosan Maaebul site located in Haman, Kyungnam, in order to present geophysical safety analysis method for masonry cultural properties. Seismic refraction exploration revealed that the ground was composed of three layers in term of seismic wave velocity; the upper, medium, and lower layers. The low velocity ranging from 308 to 366 m/sec in upper layer suggests weathered soil, the intermediate velocity from 1906 to 2090 m/sec in the medium layer indicates weathered rocks, and the high velocity from 5061 to 5650 m/sec in the lower layer implies extremely hard rocks. Our seismic result suggests that the upper and medium layer around the Maaebul should be reinforced to support the construct. The result of electric resistivity survey shows that there exists a low resistivity zone, ranging from 131 to 226 Ohm-m, at the right side of the Maaebul with the direction of NE-NNE. This area is the weakness zone as it plays role of the underground water passage in rainy season.

  • PDF

Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles using DQ and Newmark methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.717-726
    • /
    • 2018
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that $SiO_2$ nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as $SiO_2$ nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of $SiO_2$ nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

Analysis of Spatial Variability of Surface Wind during the Gangwon Yeongdong Wind Experiments (G-WEX) in 2020 (2020 강원영동 강풍 관측에서 지상 바람의 공간 변동성 분석)

  • Kim, Yu-Jeong;Kwon, Tae-Yong
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.377-394
    • /
    • 2021
  • The recent largest forest fire in the Yeongdong region, Goseung/Okgae fires of 2019 occurred during YangGang wind event. The wind can be locally gusty and extremely dry, particularly in the complex terrain of Yeongdong. These winds can cause and/or rapidly spread wildfires, the threat of which is serious during the dry spring season. This study examines the spatial variability of the surface wind and its coupling with the upper atmospheric wind using the data during the IOP of the Gangwon Yeongdong Wind Experiments (G-WEX) conducted in 2020 and the data during YangGang wind event on 4~5 April 2019. In the case of IOPs, strong wind at the surface with a constant wind direction appears in the mountain area, and weak wind with large variability in wind direction appears from foothill to the coast in the vicinity of Gangneung region. However, in the 2019 event, strong wind at the surface with a constant wind direction appears in the entire region from the mountain to the coast, even with the stronger wind in the coast than in some part of the mountain area. The characteristics of the upper atmospheric wind related with the spatial distribution of surface wind show that during IOPs of G-WEX, a strong downdraft exists near the mountaintop in the level of about 1 to 4 km. However, in the 2019 event a strong downdraft is reinforced, when its location moves toward the coast and descends close to the ground. These downdrafts are generated by the breaking of mountain waves.

Damage assessment of buildings after 24 January 2020 Elazığ-Sivrice earthquake

  • Nemutlu, Omer Faruk;Balun, Bilal;Sari, Ali
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.325-335
    • /
    • 2021
  • The majority of Turkey's geography is at risk of earthquakes. Within the borders of Turkey, including the two major active faults contain the North-Eastern and Eastern Anatolia, earthquake, threatening the safety of life and property. On January 24, 2020, an earthquake of magnitude 6.8 occurred at 8:55 p.m. local time. According to the data obtained from the stations in the region, peak ground acceleration in the east-west direction was measured as 0.292 g from the 2308 coded station in Sivrice. It is thought that the earthquake with a magnitude of Mw 6.8 was developed on the Sivrice-Puturge segment of the Eastern Anatolian Fault, which is a left lateral strike slip fault, and the tear developed in an area of 50-55 km. Aftershocks ranging from 0.8 to 5.1 Mw occurred following the main shock on the Eastern Anatolian Fault. The earthquake caused severe structural damages in Elazığ and neighboring provinces. As a result of the field investigations carried out in this study, significant damage levels were observed in the buildings since it did not meet the criteria in the earthquake codes. Within the study's scope, the structural damage cases in reinforced concrete and masonry structures were investigated. Many structural deficiencies and mistakes such as non-ductile details, poor concrete quality, short columns, strong beams-weak columns mechanism, large and heavy overhangs, masonry building damages and inadequate reinforcement arrangements were observed. Requirements of seismic codes are discussed and compared with observed earthquake damage.

Numerical FEM assessment of soil-pile system in liquefiable soil under earthquake loading including soil-pile interaction

  • Ebadi-Jamkhaneh, Mehdi;Homaioon-Ebrahimi, Amir;Kontoni, Denise-Penelope N.;Shokri-Amiri, Maedeh
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.465-479
    • /
    • 2021
  • One of the important causes of building and infrastructure failure, such as bridges on pile foundations, is the placement of the piles in liquefiable soil that can become unstable under seismic loads. Therefore, the overarching aim of this study is to investigate the seismic behavior of a soil-pile system in liquefiable soil using three-dimensional numerical FEM analysis, including soil-pile interaction. Effective parameters on concrete pile response, involving the pile diameter, pile length, soil type, and base acceleration, were considered in the framework of finite element non-linear dynamic analysis. The constitutive model of soil was considered as elasto-plastic kinematic-isotropic hardening. First, the finite element model was verified by comparing the variations on the pile response with the measured data from the centrifuge tests, and there was a strong agreement between the numerical and experimental results. Totally 64 non-linear time-history analyses were conducted, and the responses were investigated in terms of the lateral displacement of the pile, the effect of the base acceleration in the pile behavior, the bending moment distribution in the pile body, and the pore pressure. The numerical analysis results demonstrated that the relationship between the pile lateral displacement and the maximum base acceleration is non-linear. Furthermore, increasing the pile diameter results in an increase in the passive pressure of the soil. Also, piles with small and big diameters are subjected to yielding under bending and shear states, respectively. It is concluded that an effective stress-based ground response analysis should be conducted when there is a liquefaction condition in order to determine the maximum bending moment and shear force generated within the pile.

Deep learning-based post-disaster building inspection with channel-wise attention and semi-supervised learning

  • Wen Tang;Tarutal Ghosh Mondal;Rih-Teng Wu;Abhishek Subedi;Mohammad R. Jahanshahi
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.365-381
    • /
    • 2023
  • The existing vision-based techniques for inspection and condition assessment of civil infrastructure are mostly manual and consequently time-consuming, expensive, subjective, and risky. As a viable alternative, researchers in the past resorted to deep learning-based autonomous damage detection algorithms for expedited post-disaster reconnaissance of structures. Although a number of automatic damage detection algorithms have been proposed, the scarcity of labeled training data remains a major concern. To address this issue, this study proposed a semi-supervised learning (SSL) framework based on consistency regularization and cross-supervision. Image data from post-earthquake reconnaissance, that contains cracks, spalling, and exposed rebars are used to evaluate the proposed solution. Experiments are carried out under different data partition protocols, and it is shown that the proposed SSL method can make use of unlabeled images to enhance the segmentation performance when limited amount of ground truth labels are provided. This study also proposes DeepLab-AASPP and modified versions of U-Net++ based on channel-wise attention mechanism to better segment the components and damage areas from images of reinforced concrete buildings. The channel-wise attention mechanism can effectively improve the performance of the network by dynamically scaling the feature maps so that the networks can focus on more informative feature maps in the concatenation layer. The proposed DeepLab-AASPP achieves the best performance on component segmentation and damage state segmentation tasks with mIoU scores of 0.9850 and 0.7032, respectively. For crack, spalling, and rebar segmentation tasks, modified U-Net++ obtains the best performance with Igou scores (excluding the background pixels) of 0.5449, 0.9375, and 0.5018, respectively. The proposed architectures win the second place in IC-SHM2021 competition in all five tasks of Project 2.

Quasi-Static and Shaking Table Tests of Precast Concrete Structures Utilizing Clamped Mechanical Splice (가압고정 기계적이음을 활용한 프리캐스트 콘크리트 구조물의 준정적 및 진동대 실험)

  • Sung, Han Suk;Ahn, Seong Ryong;Park, Si Young;Kang, Thomas H.-K.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.37-47
    • /
    • 2023
  • A new clamped mechanical splice system was proposed to develop structural performance and constructability for precast concrete connections. The proposed mechanical splice resists external loading immediately after the engagement. The mechanical splices applicable for both large-scale rebars for plants and small-scale rebars for buildings were developed with the same design concept. Quasi-static lateral cyclic loading tests were conducted with reinforced and precast concrete members to verify the seismic performance. Also, shaking table tests with three types of seismic wave excitation, 1) random wave with white noise, 2) the 2016 Gyeongju earthquake, and 3) the 1999 Chi-Chi earthquake, were conducted to confirm the dynamic performance. All tests were performed with real-scale concrete specimens. Sensors measured the lateral load, acceleration, displacement, crack pattern, and secant system stiffness, and energy dissipation was determined by lateral load-displacement relation. As a result, the precast specimen provided the emulative performance with RC. In the shaking table tests, PC frames' maximum acceleration and displacement response were amplified 1.57 - 2.85 and 2.20 - 2.92 times compared to the ground motions. The precast specimens utilizing clamped mechanical splice showed ductile behavior with energy dissipation capacity against strong motion earthquakes.