• Title/Summary/Keyword: Reinforced foundation

Search Result 425, Processing Time 0.026 seconds

Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-of-plane motion

  • Allahkarami, Farshid;Nikkhah-bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.673-691
    • /
    • 2018
  • The main goal of this research is to examine the in-plane and out-of-plane forced vibration of a curved nanocomposite microbeam. The in-plane and out-of-plane displacements of the structure are considered based on the first order shear deformation theory (FSDT). The curved microbeam is reinforced by functionally graded carbon nanotubes (FG-CNTs) and thus the extended rule of mixture is employed to estimate the effective material properties of the structure. Also, the small scale effect is captured using the strain gradient theory. The structure is rested on a nonlinear orthotropic viscoelastic foundation and is subjected to concentrated transverse harmonic external force, thermal and magnetic loads. The derivation of the governing equations is performed using energy method and Hamilton's principle. Differential quadrature (DQ) method along with integral quadrature (IQ) and Newmark methods are employed to solve the problem. The effect of various parameters such as volume fraction and distribution type of CNTs, boundary conditions, elastic foundation, temperature changes, material length scale parameters, magnetic field, central angle and width to thickness ratio are studied on the frequency and force responses of the structure. The results indicate that the highest frequency and lowest vibration amplitude belongs to FGX distribution type while the inverse condition is observed for FGO distribution type. In addition, the hardening-type response of the structure with FGX distribution type is more intense with respect to the other distribution types.

Reinforcement Effect of Marine Structure Foundation by Deep Mortar Piling (심층몰탈파일에 의한 호안구조물의 기초보강 효과)

  • Chun, Byung-Sik;Yang, Hyung-Chil;Yang, Jin-Suk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.2
    • /
    • pp.41-50
    • /
    • 2001
  • In this study, for the stability analysis of marine embankment, the slope stability analysis and possibility of lateral movement with the marine embankment in ${\bigcirc}{\bigcirc}$harbor were carried out. In order to simulate the practical site condition, the expected maximum sea water level and maximum embankment height were assumed for these analyses. For the evaluation of soil properties, field test, laboratory test, and especially chemical composition analysis were performed for the this analysis. Based on these test results, the soil parameters were determined by applying ground improvement concept under columnar stabilized ground condition and also the effect of staged backfilling was considered under the dredged ground condition. For the optimal design, the stability analyses of embankment with changed height and unchanged height were performed under unimproved soil condition. The result showed that both cases were unstable not only with slope stability but also with lateral movement. Therefore, Deep Mortar Piling was applied for stability analysis and this result was safe. As the conclusion, the deep mortar piling method was suggested as reinforced foundation design for this site.

  • PDF

Size-dependent free vibration of coated functionally graded graphene reinforced nanoplates rested on viscoelastic medium

  • Ali Alnujaie;Ahmed A. Daikh;Mofareh H. Ghazwani;Amr E. Assie;Mohamed A Eltaher
    • Advances in nano research
    • /
    • v.17 no.2
    • /
    • pp.181-195
    • /
    • 2024
  • This study introduces a novel functionally graded material model, termed the "Coated Functionally Graded Graphene-Reinforced Composite (FG GRC)" model, for investigating the free vibration response of plates, highlighting its potential to advance the understanding and application of material property variations in structural engineering. Two types of coated FG GRC plates are examined: Hardcore and Softcore, and five distribution patterns are proposed, namely FG-A, FG-B, FG-C, FG-D, and FG-E. A modified displacement field is proposed based on the higher-order shear deformation theory, effectively reducing the number of variables from five to four while accurately accounting for shear deformation effects. To solve the equations of motion, an analytical solution based on the Galerkin approach was developed for FG GRC plates resting on a viscoelastic Winkler/Pasternak foundation, applicable to various boundary conditions. A comprehensive parametric analysis elucidates the impact of multiple factors on the fundamental frequencies. These factors encompass the types and distribution patterns of the coated FG GRC plates, gradient material distribution, porosities, nonlocal length scale parameter, gradient material scale parameter, nanoplate geometry, and variations in the elastic foundation. Our theoretical research aims to overcome the inherent challenges in modeling structures, providing a robust alternative to experimental analyses of the mechanical behavior of complex structures.

Wall Displacement of Geosynthetic Reinforced Soil Walls with Different Surcharge Loads - Model Test (상재하중 변화에 따른 토목섬유 보강토옹벽의 벽체변위)

  • Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.41-47
    • /
    • 2008
  • This paper describes the results of model experiments in the laboratory, which were conducted to assess the behavior characteristics of geosynthetic reinforced soil walls according to different surcharge loads and reinforcement types. The model walls were built in the box having dimension, 100 cm tall, 140 cm long, and 100cm wide. Three types of geosynthetics, geonet, geogrid A and geogrid B, are used as the reinforcements. Decomposed granite soil (SM) was used as a backfill material. Seven model walls are constructed and tested. After the construction of the model wall, the LVDTs are installed to obtain the displacements of the wall face. As the results of the model tests, the maximum horizontal displacements of the model walls occurred due to uniform surcharge pressure were measured at the 0.7H from the bottom of the wall. The more the reinforcement strength increases, the more the wall displacements decrease, and also the reduction ratio of the wall displacement decrease with increasing the surcharge pressure.

  • PDF

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on an Elastic Foundation - With Application to the Nuclear Reinforced Concrete Containment Structures- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석(I) -철근 콘크리트 원자로 격납 건물을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.82-91
    • /
    • 1996
  • This is a basic study for the static and dynamic analysis on the elasto-plastic and elasto-viscoplastic of an axi-symmetric shell. The objective of this study was to investigate the mechanical characteristics of a nuclear reinforced concrete containment structure, which was selected as a model, by a numerical analysis using a finite element method. The structure was modeled with discrete ring elements of 8-noded isoparametric element rotating against the symmetrical axis, and the interaction between the foundation and the structure was modeled by Winkler's model. Also, the meridional tendon was modeled with 2-node truss elements, and the hoop tendon was done with point elements in two degrees of freedom. The effect of the tendon was considered without the increasement in total degree of freedom as the stiffness matrix of modeled tendon elements was assembled on the stiffness matrix of ring elements linked with the tendon. The results obtained from the analysis of an example were summarized as follows : 1. The stresses in the hoop direction on the interior and exterior surfaces of the structure were shown in changes of similar trend, and high stresses appeared on the structure wall 2. The stresses in the meridional direction on the interior and exterior surfaces were shown in change of different trend. Especially, the stresses at the junctions between the dome and the wall and between the wall and the bottom plate of the structure were very high, compared with those at other parts of the structure. 3. The stress changes in the direction of thickness on the crown of the dome were much linearly distributed. However, as the amount of tendon increased, the stresses in the upper and lower parts of the wall established with the tendon were shown stress concentration. 4. The stress changes in the direction of thickness on the center of the structure wall was linearly distributed in the all cases, and special stress due to the use of the tendon was not shown.

  • PDF

Design Method of Spread Footing of Semicircular Shape Reinforced by Geosynthetics (토목섬유로 보강된 반원형상의 확대기초의 설계법)

  • Ju, Jae-Woo;Lee, Seung-Eun;Park, Jong-Beom;Kim, Ki-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.4
    • /
    • pp.41-48
    • /
    • 2004
  • Recently a method for increasing the bearing capacity by laying the reinforcing materials with three or four layers as a method reinforcing the ground was studied recently. The purpose of this study is to examine the method for increasing shear-strength factor of the ground by reinforcing the ground under the foundation. According a method of wrapping ground with bakk-shape or semicircle-shape by geotextile was developed in this study and it looks likes anaspect that spreading footing exits under spread footing. A simulation loading-test using Aluminum sticks was carried out in order to examine the mechanism about bearing capacity of spread footing reinforced by geotextile. Increase of ultimate bearing capacity was verified in this simulation loading-test when charging loads to spread footing, which is propose from this study, reinforced by geotextile. And moving directions of points of the ground were also checked by grid-type indication method, and the areas where plastic failure appeared were checked by B-shutter photographing.

  • PDF

Long Term Behaviors of Geosynthetics Reinforced Soil Walls (보강토옹벽의 장기거동분석에 관한 연구)

  • Won, Myoung-Soo;Lee, Yong-An;Kim, You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.33-42
    • /
    • 2006
  • Geosynthetics reinforced soil (GRS) walls with a flexible wall face allow deformation. GRS walls constructed on the weak ground change in both horizontal earth pressures on wall faces and the tensile stress of geosynthetics, affecting the backfill in time until the deformation of the backfill and the foundation is completed. However, there are few studies that were done to measure and analyze the horizontal earth pressures and geosynthetics deformation on GRS walls constructed on the soft ground for a long period of time. Two field GRS walls in this study are constructed on a shallow layer of a weak foundation to measure and analyze geostynthetics deformation, horizontal earth pressures, and pore water pressures for the duration of approximately 16 months. Strain gauges are used to measure geosynthetics deformation; this study specifically suggests a new method of measuring nonwoven geotextile using strain gauges. Most geosynthetics deformation occurred within a month after the construction of GRS walls. The maximum deformation measured for approximately 16 months appeared as follows: nowoven geotextile: 6.05%, woven geotextile: 2.92%, and geogrid: 2.33%. Pore water pressures on the GRS wall can be ignored; however, horizontal earth pressures on the bottom and the upper part of the wall face appear larger than earth pressures at rest.

A review on uplift response of symmetrical anchor plates embedded in reinforced sand

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.187-194
    • /
    • 2013
  • The most soil anchor works have been concerned with the uplift problem on embedded in non-reinforced soils under pullout test. Symmetrical anchor plates are a foundation system that can be resisting tensile load with the support of around soil in which symmetrical anchor plate is embedded. Engineers and authors proved that the uplift response can be improved by grouping the symmetrical anchor plates, increasing the unit weight, embedment ratio and the size of symmetrical anchor plates. Innovation of geosynthetics in the field of geotechnical engineering as reinforcement materials found to be possible solution in symmetrical anchor plate responses. Unfortunately the importance of reinforcement in submergence has received very little attention by researchers. In this paper, provision of tensile reinforcement under embedded conditions has been studied through uplift experiments on symmetrical anchor plates by few researchers. From the test results it has been showed that the provision of geogrid reinforcement system enhances the uplift response substantially under uplift test although other results are such as increase the ultimate uplift response of symmetrical anchor plate embedded using geosynthetic and Grid Fixed Reinforced (GFR) and symmetrical anchor plate improvement is very dependent on geosynthetic layer length and increases significantly until the amount of beyond that further increase in the layer length does not show a significant contribution in the anchor response.

Sensitivity Analysis of the Factors Influencing for Decision of Reinforced Roadbed Thickness (강화노반 두께 결정을 위한 영향인자 민감도 분석)

  • Choi, Chan-Yong;Lee, Jin-Wook;Bae, Jae-Hoon;Shin, Eun-Chul
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1827-1832
    • /
    • 2007
  • The purpose of a railway track is to provide a smooth surface for safe and economical train transportation. The performance of the track results from a complex interaction of the track and subgrade components in response to train loading and environmental actions. In the past, the role of subgrade as the track foundation were not recognized adequately. There are insufficient information and inadequate methods for subgrade design, assessment and improvement. This situation has survived for a long time largely because a subgrade defect can often be adjusted by adding more ballast under the ties or applying more frequent track maintenance. Therefore, the application of reinforced roadbed technology will be expected to increase in the future. The reinforced roadbed thickness is set depending on subgrade reaction modulus$(K_{30})$ in the condition of upper subgrade through PBT in both conventional railroad and KTX railroads. As train velocity (V), train passing tonnage (N), and train axial load (P) are not considered in design, the roadbed thickness could be overestimated (or underestimated). Therefore, In this study, the computer model, GEOTRACK, was analyzed the influence of reinforced roadbed thickness factors on track modulus and the characteristics of stress pulses in track and subgrade generated by repeated axle loading.

  • PDF

Determination Method of Reinforced Roadbed Thickness based on Design Chart (설계지표를 이용한 철도강화노반 두께 산정에 관한 연구)

  • Yoo, Chung-Hyun;Choi, Chan-Yong;Kim, Dae-Sang
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1279-1286
    • /
    • 2007
  • The purpose of a railway track is to provide a smooth surface for safe and economical train transportation. The performance of the track results from a complex interaction of the track and subgrade components in response to train loading and environmental actions. In the past, the role of subgrade as the track foundation were not recognized adequately. There are insufficient information and inadequate methods for subgrade design, assessment and improvement. This situation has survived for a long time largely because a subgrade defect can often be adjusted by adding more ballast under the ties or applying more frequent track maintenance. Therefore, the application of reinforced roadbed technology will be expected to increase in the future. The reinforced roadbed thickness is set depending on subgrade reaction modulus($K_{30}$) in the condition of upper subgrade through PBT in both conventional railroad and KTX railroads. As train velocity (V), train passing tonnage (N), and train axial load (P) are not considered in design, the roadbed thickness could be overestimated (or underestimated). Therefore, in this study has proposed a determination method of reinforced roadbed thickness using design chart made by resilience modulus and properties of earthwork materials.

  • PDF