• Title/Summary/Keyword: Reinforced concrete walls

Search Result 469, Processing Time 0.021 seconds

Shear Strength and Deformability of HSC Shear Walls (고강도 콘크리트 전단벽의 강도와 변형능력)

  • 윤현도;최창식;오영훈;이훈희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.925-930
    • /
    • 2003
  • Provisions for ACI 318-02 and NZS 3101 pertaining to shear design of shear walls evaluated the applicability of high-strength, concrete shear walls subjected to lateral loads. Results of 73 tests of reinforced concrete shear walls were reviewed. Evaluation of test results conducted in Korea, England, America, Japan, and Australia for low-aspect ratio walls indicates that the nominal unit shear strength($\phi$=1.0) calculated using the provisions of ACI and NZS does not represent the observed shear strength well. Based on the limited database considered in this study, a reasonable lower bound to the shear strength of high-strength concrete shear walls is found to be $\sqrt[0.4]{f_{cu}}$ MPa. Similar to that of normal strength concrete walls, the rate of increase of the measured shear strength with $$\rho$_n/ㆍf_y$ is less than 1.0. Therefore, the rate of increase of shear strength attributable to the web reinforcement in shear walls appears to be overestimated by the modified truss analogy.

  • PDF

Finite element analysis of RC walls with different geometries under impact loading

  • Husem, Metin;Cosgun, Suleyman I.;Sesli, Hasan
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.583-592
    • /
    • 2018
  • Today, buildings are exposed to the effects such as explosion and impact loads. Usually, explosion and impact loads that act on the buildings such as nuclear power plants, airports, defense industry and military facilities, can occur occasionally on the normal buildings because of some reasons like drop weight impacts, natural gas system explosions, and terrorist attacks. Therefore, it has become important to examine the behavior of reinforced concrete (RC) structures under impact loading. Development of computational mechanics has facilitated the modeling of such load conditions. In this study, three kinds of RC walls that have different geometric forms (square, ellipse, and circle) and used in guardhouses with same usage area were modeled with Abaqus finite element software. The three configurations were subjected to the same impact energy to determine the geometric form that gives the best behavior under the impact loading. As a result of the analyses, the transverse impact forces and failure modes of RC walls under impact loading were obtained. Circular formed (CF) reinforced concrete wall which has same impact resistance in each direction had more advantages. Nonetheless, in the case of the impact loading occurring in the major axis direction of the ellipse (EF-1), the elliptical formed reinforced concrete wall has higher impact resistance.

Shear response estimate for squat reinforced concrete walls via a single panel model

  • Massone, Leonardo M.;Ulloa, Marco A.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.647-665
    • /
    • 2014
  • Squat reinforced concrete walls require enough shear strength in order to promote flexural yielding, which creates the need for designers of an accurate method for strength prediction. In many cases, especially for existing buildings, strength estimates might be insufficient when more accurate analyses are needed, such as pushover analysis. In this case, estimates of load versus displacement are required for building modeling. A model is developed that predicts the shear load versus shear deformation of squat reinforced concrete walls by means of a panel formulation. In order to provide a simple, design-oriented tool, the formulation considers the wall as a single element, which presents an average strain and stress field for the entire wall. Simple material constitutive laws for concrete and steel are used. The developed models can be divided into two categories: (i) rotating-angle and (ii) fixed-angle models. In the first case, the principal stress/strain direction rotates for each drift increment. This situation is addressed by prescribing the average normal strain of the panel. The formation of a crack, which can be interpreted as a fixed principal strain direction is imposed on the second formulation via calibration of the principal stress/strain direction obtained from the rotating-angle model at a cracking stage. Two alternatives are selected for the cracking point: fcr and 0.5fcr (post-peak). In terms of shear capacity, the model results are compared with an experimental database indicating that the fixed-angle models yield good results. The overall response (load-displacement) is also reasonable well predicted for specimens with diagonal compression failure.

Effect of Edge Confinement on Deformation Capacity in the Isolated RC Structural Walls (벽체 단부의 횡보강근 양에 따른 변형능력의 평가)

  • 한상환;오영훈;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.101-112
    • /
    • 1999
  • Structural walls have been mostly used for the design of reinforced concrete buildings in seismic areas because they play a role as an efficient bracing system and offer great potential for lateral load resistance and drift control. The lateral resistance system for the earthquake load should be designed to have enough ductility and stable hysteretic response in the critical regions where plastic deformation occurred beyond yielding. The behavior of the reinforced concrete element to experience large deformation in the critical areas by a major earthquake is affected by the performance of the confined core concrete. Thus, the confinement of concrete by suitable arrangements of transverse reinforcement results in a significant increase in both the strength and ductility of compressed concrete. This paper reports the experimental results of reinforced concrete structural walls for wall-type apartment structure under axial loads and cyclic reversal of lateral loads with different confinement of the boundary elements. The results show that confinement of the boundary element by open 'U'-bar and cross tie is effective. The shear strength capacity is not increased by the confinement but deformation capacity is improve.

Experimental study on cyclic behavior of reinforced concrete parallel redundancy walls

  • Lua, Yiqiu;Huang, Liang
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1177-1191
    • /
    • 2014
  • Reinforced concrete (RC) shear walls are one of the most commonly used lateral-load resisting systems in high-rise buildings. RC Parallel redundancy walls studied herein consist of two parts nested to each other. These two parts have different mechanical behaviors and energy dissipation mechanisms. In this paper, experimental studies of four 1/2-scale specimens representing this concept, which are subjected to in-plane cyclic loading, are presented and test results are discussed. Two specimens consist of a wall frame with barbell-shaped walls embedded in it, and the other two consist of a wall frame and braced walls nested each other. The research mainly focuses on the failure mechanism, strength, hysteresis loop, energy dissipation capacity and stiffness of these walls. Results show that the RC parallel redundancy wall is an efficient lateral load resisting component that acts as a "dual" system with good ductility and energy dissipation capacity. One main part absorbs a greater degree of the energy exerted by an earthquake and fails first, whereas the other part can still behave as an independent role in bearing loads after earthquakes.

Seismic Retrofit of an Existing School Building using CIP-Infilled Shear Walls and Steel Braces (현장타설 끼움 전단벽 및 철골가새를 활용한 기존 학교 건물의 내진보강)

  • Youn, Gil-Ho;Kim, Sung-Ho;Kim, Yong-Cheol;Yun, Hyun-Do
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.19 no.4
    • /
    • pp.21-28
    • /
    • 2012
  • This study proposes a procedure for evaluating the seismic performance and retrofit of a typical reinforced building (R/C) school buildings contructed in the 1980s. The procedure is derived from the Japanese Standard for Evaluation of Seismic Capacity of Existing Reinforced Concrete Buildings and Nonlinear Static Procedure (NSP) specified in Federal Emergency Management Agency (FEMA 356). In this study, the Japanese Standard was applied for evaluating the additionally required seismic performance in the existing school building. Cast-in-place (CIP) reinforced concrete infill walls and steel braces were used to seismically retrofit the existing school building located in the region of Hongsung in Chungnam. In the pushover analysis, i.e NSP, the hinge properties of columns, beams, infill walls and steel braces were carefully calibrated based on the existing experiment results in the available literatures. The predicted seismic performance for the retrofitted building was compared to that for the virgin building. Based on the seismic evaluation with the Japanese Standard and the FEMA 356 criteria, the addition of CIP reinforced concrete infill walls and steel braces have superior constructablility and can improve effectively the seismic performance of the existing school buildings constructed in 1980s.

Dynamic behaviour of stiffened and damaged coupled shear walls

  • Meftah, S.A.;Tounsi, A.;Adda-Bedia, E.A.
    • Computers and Concrete
    • /
    • v.3 no.5
    • /
    • pp.285-299
    • /
    • 2006
  • The free vibration of stiffened and damaged coupled shear walls is investigated using the mixed finite element method. The anisotropic damage model is adopted to describe the damage extent of the reinforced concrete shear wall element. The internal energy of a locally damaged shear wall element is derived. Polynomial shape functions established by Kwan are used to present the component of displacements vector on each point within the wall element. The principle of virtual work is employed to deduce the stiffness matrix of a damaged shear wall element. The stiffened system is reinforced by an additional stiffening beam at some level of the structure. This induces additional axial forces, and thus reduces the bending moments in the walls and the lateral deflection, and increases the natural frequencies. The effects of the damage extent and the stiffening beam on the free vibration characteristics of the structure are studied. The optimal location of the stiffening beam for increasing as far as possible the first natural frequency of vibration is presented.

Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls

  • Beiraghi, Hamid
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.443-454
    • /
    • 2019
  • In order to reduce the residual drift of a structure in structural engineering field, a combined structural system (dual) consisting of steel buckling-restrained braced frame (BRBF) along with shear wall is proposed. In this paper, BRBFs are used with special reinforced concrete shear walls as combined systems. Some prototype models of the proposed combined systems as well as steel BRBF-only systems (without walls) are designed according to the code recommendations. Then, the nonlinear model of the systems is prepared using fiber elements for the reinforced concrete wall and appropriate elements for the BRBs. Seismic responses of the combined systems subjected to ground motions at maximum considered earthquake level are investigated and compared to those obtained from BRBFs. Results showed that the maximum residual inter-story drift from the combined systems is, on average, less than half of the corresponding value of the BRBFs. In this research, mean of absolute values of the maximum inter-story drift ratio demand obtained from combined systems is less than the 3% limitation, while this criterion has not been fulfilled by BRBF systems.

Ensemble techniques and hybrid intelligence algorithms for shear strength prediction of squat reinforced concrete walls

  • Mohammad Sadegh Barkhordari;Leonardo M. Massone
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.37-59
    • /
    • 2023
  • Squat reinforced concrete (SRC) shear walls are a critical part of the structure for both office/residential buildings and nuclear structures due to their significant role in withstanding seismic loads. Despite this, empirical formulae in current design standards and published studies demonstrate a considerable disparity in predicting SRC wall shear strength. The goal of this research is to develop and evaluate hybrid and ensemble artificial neural network (ANN) models. State-of-the-art population-based algorithms are used in this research for hybrid intelligence algorithms. Six models are developed, including Honey Badger Algorithm (HBA) with ANN (HBA-ANN), Hunger Games Search with ANN (HGS-ANN), fitness-distance balance coyote optimization algorithm (FDB-COA) with ANN (FDB-COA-ANN), Averaging Ensemble (AE) neural network, Snapshot Ensemble (SE) neural network, and Stacked Generalization (SG) ensemble neural network. A total of 434 test results of SRC walls is utilized to train and assess the models. The results reveal that the SG model not only minimizes prediction variance but also produces predictions (with R2= 0.99) that are superior to other models.

Structural Performance Evaluation of Repaired Structural Walls (보수된 전단벽의 강도 및 변형능력 회복 여부에 관한 연구)

  • 유승욱;한상환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.525-528
    • /
    • 1999
  • Structural walls have been favored for the design of reinforced concrete buildings in seismic zone areas because they provide an efficient bracing system and offer great potential for lateral load resistance and drift control. Loads on structures due to earthquakes are not unlikely to reach, if not exceed, the design load levels. Hence, structural damage to walls is inevitable, and it is necessary to repair this damaged walls. Yet, information on repair method and data related to the strength and deformation characteristics of repaired walls is limited. In this study, specimens which have their aspect ratios of about 1 to 3 will be repaired. For the repairing the damaged walls, new concrete and new reinforcing bar are replaced with cracked concrete and the buckled reinforcing bar, respectively. The objective of this study is to evaluate the performance of the repaired structural walls in the capacity of strength, stiffness, and maximum deformation comparing with the undamaged walls.

  • PDF