• Title/Summary/Keyword: Reinforced concrete slab bridge

Search Result 67, Processing Time 0.021 seconds

Experimental Investigations on the Flexural Behavior of One-Way Concrete Slabs Reinforced with GFRP Re-Bar Bundle (유리섬유 보강 플래스틱 Re-Bar 다발로 보강된 1방향 콘크리트 슬래브의 휨거동에 관한 실험적 연구)

  • 윤순종;김병석;유성근;정재호;정상균
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.32-40
    • /
    • 2003
  • In recent years, the investigation on the development of fiber reinforced plastic(FRP) Re-Bar has been greatly increased due to the attractive physical and mechanical properties of FRP. The primary reason of such a tendency is in the fact that it does not ordinarily cause durability problems such as those associated with steel reinforcement corrosion. This study is an experimental investigation on the flexural behavior of one-way concrete slabs, which can be used to construct bridge deck, reinforced with GFRP Re-Bar bundle. The tensile tests of GFRP Re-Bar produced by domestic industry and third point bending tests of one-way slab specimens reinforced with GFRP Re-Bar bundle are peformed. For all slab specimens, load-deflection relations are predicted by using the ACI committee 440 and the results are compared with experimental ones. In order to establish the design criteria or guidelines of concrete flexural member reinforced with FRP Re-Bar, it is needed to evaluate the serviceability limit state as well as the strength limit state.

Flexural Tests of High Performance Hollow Core Slabs (고성능 중공슬래브의 휨 실험)

  • 박현석;김인규;조영모;유승룡
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.167-172
    • /
    • 2001
  • Hollow core slabs generally have not been used for a bridge slab or a parking in Korea. In this study, high performance hollow core slabs, which has been the most thick one in domestic are re-designed and examined for practical use. Flexural tests were performed on four 315mm deep hollow core slabs to investigate adaptability for high vehicle live loadings and composite action with topping concrete. The precast slabs were reinforced with 10-l/2 inch dia-strands at the lower of slab and 4-l/2 inch dia-strands at tile upper of slab, and cast with 80mm deep topping concrete. Those tested hollow core slabs showed ductile failure behaviors which were conform to the current Ultimate Strength Design Method for a span of l0m up to the live load of 1, 000 kg/$m^2$.

  • PDF

Modal identification and model updating of a reinforced concrete bridge

  • El-Borgi, S.;Choura, S.;Ventura, C.;Baccouch, M.;Cherif, F.
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.83-101
    • /
    • 2005
  • This paper summarizes the application of a rational methodology for the structural assessment of older reinforced concrete Tunisian bridges. This methodology is based on ambient vibration measurement of the bridge, identification of the structure's modal signature and finite element model updating. The selected case study is the Boujnah bridge of the Tunis-Msaken Highway. This bridge is made of a continuous four-span simply supported reinforced concrete slab without girders resting on elastomeric bearings at each support. Ambient vibration tests were conducted on the bridge using a data acquisition system with nine force-balance accelerometers placed at selected locations of the bridge. The Enhanced Frequency Domain Decomposition technique was applied to extract the dynamic characteristics of the bridge. The finite element model was updated in order to obtain a reasonable correlation between experimental and numerical modal properties. For the model updating part of the study, the parameters selected for the updating process include the concrete modulus of elasticity, the elastic bearing stiffness and the foundation spring stiffnesses. The primary objective of the paper is to demonstrate the use of the Enhanced Frequency Domain Decomposition technique combined with model updating to provide data that could be used to assess the structural condition of the selected bridge. The application of the proposed methodology led to a relatively faithful linear elastic model of the bridge in its present condition.

Design approach for a FRP structural formwork based steel-free modular bridge system

  • Cheng, Lijuan;Karbhari, Vistasp M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.561-584
    • /
    • 2006
  • The paper presents results of parametric studies, and an overall approach for the design of a modular bridge system which incorporates a steel-reinforcement free concrete slab cast on top of carbon FRP stiffened deck panels which act as both structural formwork and flexural reinforcement, spanning between hollow box type FRP girders. Results of the parametric studies are highlighted to elucidate important relationships between critical configurational parameters and empirical equations based on numerical studies are presented. Results are discussed at the level of the individual deck and girder components, and as a slab-on-girder bridge system. An overall design methodology for the components and bridge system including critical performance checks is also presented.

A Foundamental Study on Evaluation of Adhesive Strength in Reinforced Position Concrete Structure Used Fiber Sheet (섬유쉬트 보강부위의 부착성능 평가에 관한 기초연구)

  • 안상철;곽규성;이성혁;오상근;박국배;안상덕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.613-617
    • /
    • 1998
  • This study deals with the effect on adhesive strength properties of fiber sheet layer and maintenance position of coccrete structure reinforced using epoxy resin carbon and aramit fiber sheet. Properties of epoxy resin adhesive strength of the concrete bridge slab, tunnel and wall etc. reinforced using fiber sheet under many different environment change according to condition of concrete substrate, temperature, moisture, curing, cleaning, and chemical effects and so on. The purpose of this study is that it makes the estimation value of adhesive strength of concrete substrate and fiber sheet reinforcing layer penetrated epoxy resin under high temperature(9$0^{\circ}C$), chemical attack and condition of curing.

  • PDF

A Experimental Study on the Flexural Behavior of Bundle Type Polyamide Fiber Reinforced Concrete (다발형 폴리아미드섬유 보강 콘크리트의 휨거동에 관한 실험적 연구)

  • Jeon, Chan Ki;Jeon, Joong Kyu
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.61-70
    • /
    • 2014
  • Synthetic fiber reinforced concrete is applicable to many applications for construction material. In general, synthetic fibers have low tensile strength and elastic modulus, but they have many advantages such as high crack resistance, impact resistance, chemical resistance, flexural behavior and corrosion free in fiber reinforced concrete. Recently, fiber reinforced concrete with macro synthetic fibers has been used to improve performance of structures in tunnel shotcrete, precast segmental lining and bridge slab and precast concrete structures. This study investigated the influence of bundled type polyamide fiber reinforced concrete on the flexural behavior in accordance with ASTM C 1609 and KS F 2566 standards.

A Study on Load distribution Effect for Bridge Structures (교량 구조의 하중분배 효과에 관한 연구)

  • 정철헌;오병환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.234-239
    • /
    • 1992
  • Design live load and girder distribution factors play an important role in the current design procedures. The fraction of vehicle load effect transferred to a single member may be selected in accordance with current KBDC. However, the specified values, both design load and distribution factors involve considerable inaccuracies, These inaccuracies relate to the uncertainties of the structural analysis, especially any bias and scatter which drives from the use of simplified load distribution factors. In this study , based on several field measurement and finite element analysis, live load distribution effects of current KBDC are evaluated. The final values of the bias and coefficient of variation of "g"according to bridge type are determined. The bridge types are reinforced concrete slab, prestressed concrete girder and steel l-beam.el l-beam.

  • PDF

Required ties in continuous RC beams to resist progressive collapse by catenary action

  • Alrudaini, Thaer M.S.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.403-411
    • /
    • 2021
  • Ties are mandated by many design guidelines and codes to prevent the progressive collapse of buildings initiated by local failures. This study develops a model to estimate catenary/cable action capacity and the required ties in continuous reinforced concrete beams to bridge above the potential failed interior columns. The developed model is derived based on virtual work method and verified using test results presented in the literature. Also, parametric investigations are conducted to estimate the required ties in continuous reinforced concrete beams supporting one-way slab systems. A comparison is conducted between the estimated tie reinforcement using the developed model and that provided by satisfying the integrity provisions of the ACI 318-14 (2014) code. It is shown that the required tie reinforcements to prevent progressive collapse using the developed model are obviously larger than that provided by the integrity requirements of the ACI 318-14 (2014) code. It has been demonstrated that the increases in the demanded tie reinforcements over that provided by satisfying ACI 318-14 (2014) integrity provisions are varied between 1.01 and 1.46.

Computational optimisation of a concrete model to simulate membrane action in RC slabs

  • Hossain, Khandaker M.A.;Olufemi, Olubayo O.
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.325-354
    • /
    • 2004
  • Slabs in buildings and bridge decks, which are restrained against lateral displacements at the edges, have ultimate strengths far in excess of those predicted by analytical methods based on yield line theory. The increase in strength has been attributed to membrane action, which is due to the in-plane forces developed at the supports. The benefits of compressive membrane action are usually not taken into account in currently available design methods developed based on plastic flow theories assuming concrete to be a rigid-plastic material. By extending the existing knowledge of compressive membrane action, it is possible to design slabs in building and bridge structures economically with less than normal reinforcement. Recent research on building and bridge structures reflects the importance of membrane action in design. This paper describes the finite element modelling of membrane action in reinforced concrete slabs through optimisation of a simple concrete model. Through a series of parametric studies using the simple concrete model in the finite element simulation of eight fully clamped concrete slabs with significant membrane action, a set of fixed numerical model parameter values is identified and computational conditions established, which would guarantee reliable strength prediction of arbitrary slabs. The reliability of the identified values to simulate membrane action (for prediction purposes) is further verified by the direct simulation of 42 other slabs, which gave an average value of 0.9698 for the ratio of experimental to predicted strengths and a standard deviation of 0.117. A 'deflection factor' is also established for the slabs, relating the predicted peak deflection to experimental values, which, (for the same level of fixity at the supports), can be used for accurate displacement determination. The proposed optimised concrete model and finite element procedure can be used as a tool to simulate membrane action in slabs in building and bridge structures having variable support and loading conditions including fire. Other practical applications of the developed finite element procedure and design process are also discussed.

A Study about the Optical Mixing in accordance with High-Strength Steel and Concrete Strength Levels (고강도 철근과 콘크리트 강도수준에 따른 최적조합에 관한 연구)

  • Choi, Pan-Gil;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.111-118
    • /
    • 2006
  • The reinforced concrete structure is one of the most popular structures in real construction. Concrete has been strengtened rapidly due to the development of new material and construction technology. But as the concrete has been getting stronger, the brittleness of material has increased and the better ductility has been required. So, the study for strengthening stiffener has been urgently needed. As we said above, it is expected that the use of high strength steel and concrete will be increased. However, The experimental data is not enough for solving problems of the use of high strengthened steel and concrete. In this research, we analyzed 45 combinations of the strength levels of concrete, the thickness of material and the steel strength with regard to simple Reinforced Concrete SLAB Beam bridge. The program MIDAS CIVIL was used to find the optimal combination. As a result, it was found that strength ratio per unit section is in inverse proportion to the strength of material and that the strengths of steel are respectively 400 MPa for low strengthened concrete and 300 MPa for high strengthened concrete. For economic aspect and usability, the effect of high strength steel is not as high as we expected it would be.

  • PDF