• 제목/요약/키워드: Reinforced concrete school buildings

검색결과 127건 처리시간 0.022초

Seismic experiment and analysis of rectangular bottom strengthened steel-concrete composite columns

  • Hui, Cun;Zhu, Yanzhi;Cao, Wanlin;Wang, Yuanqing
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.599-621
    • /
    • 2016
  • In order to study the working mechanism of rectangular steel-concrete composite columns subjected to compression-bending load and further determine the seismic performance index, a bottom strengthened rectangular steel reinforced concrete (SRC) column with concealed steel plates and a bottom strengthened rectangular concrete filled steel tube (CFST) columns were proposed. Six column models with different configurations were tested under horizontal low cyclic loading. Based on the experiments, the load-bearing capacity, stiffness and degradation process, ductility, hysteretic energy dissipation capacity, and failure characteristics of the models were analyzed. The load-bearing capacity calculation formulas for a normal section and an oblique section of bottom strengthened rectangular steel-concrete composite columns were pesented and a finite element (FE) numerical simulation of the classical specimens was performed. The study shows that the load-bearing capacity, ductility, and seismic energy dissipation capacity of the bottom strengthened rectangular steel-concrete composite columns are significantly improved compared to the conventional rectangular steel-concrete composite columns and the results obtained from the calculation and the FE numerical simulation are in good agreement with those from the experiments. The rectangular steel-concrete composite column with bottom strengthened shows better seismic behavior and higher energy dissipation capacity under suitable constructional requirements and it can be applied to the structure design of high-rise buildings.

Fragility curves of gravity-load designed RC buildings with regularity in plan

  • Masi, A.;Digrisolo, A.;Manfredi, V.
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.1-27
    • /
    • 2015
  • In this paper Fragility Curves (FCs) relevant to existing RC framed building types representative of the Italian building population designed only to vertical load and regular in-plan have been derived from an extensive campaign of non-linear dynamic analyses. In the generation of the FCs, damage states according to the EMS98 scale have been considered while the intensity measure has been defined by adopting an integral parameter, such as the Housner intensity. FCs have been generated by varying different parameters, including building age, number of storeys, presence and position of infill panels, plan dimensions, external beams stiffness and concrete strength. In order to verify the effectiveness of the damage prediction, comparisons were made between the results obtained from the proposed FCs with those deriving from both prominent fragility studies available in the technical literature and damage distributions observed in past earthquakes. Results show that damage grades obtained by adopting the proposed FCs are generally lower than those provided by the other approaches considered. A comparison with real damage data, shows that the proposed FCs generally estimate more severe damage distributions than those observed in past earthquakes, although they give lower differences with respect to the other approaches.

Ratio of Torsion (ROT): An index for assessing the global induced torsion in plan irregular buildings

  • Stathi, Chrysanthi G.;Bakas, Nikolaos P.;Lagaros, Nikos D.;Papadrakakis, Manolis
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.145-171
    • /
    • 2015
  • Due to earthquakes, many structures suffered extensive damages that were attributed to the torsional effect caused by mass, stiffness or strength eccentricity. Due to this type of asymmetry torsional moments are generated that are imposed by means of additional shear forces developed at the vertical resisting structural elements of the buildings. Although the torsional effect on the response of reinforced concrete buildings was the subject of extensive research over the last decades, a quantitative index measuring the amplification of the shear forces developed at the vertical resisting elements due to lateral-torsional coupling valid for both elastic and elastoplastic response states is still missing. In this study a reliable index capable of assessing the torsional effect is proposed. The performance of the proposed index is evaluated and its correlation with structural response quantities like displacements, interstorey drift, base torque, shear forces and upper diaphragm's rotation is presented. Torsionally stiff, mass eccentric single-story and multistory structures, subjected to bidirectional excitation, are considered and nonlinear dynamic analyses are performed using natural records selected for three hazard levels. It was found that the proposed index provides reliable prediction of the magnitude of torsional effect for all test examples considered.

조적채움벽 및 허리벽이 학교 건물 내진 성능에 미치는 영향에 대한 해석적 연구 (Analytical Study of the Effect of Full and Partial Masonry Infills on the Seismic Performance of School Buildings)

  • 김태완;민찬기
    • 한국지진공학회논문집
    • /
    • 제17권5호
    • /
    • pp.197-207
    • /
    • 2013
  • The seismic performance of school buildings has been a matter of common interest socially and academically. The structural system of the school buildings is representative of the domestic low-rise reinforced concrete moment resisting frames, which apply extensively infills in their masonry walls. The masonry infilled walls are divided into full masonry infill in the transverse direction and partial masonry infill in the longitudinal direction. The masonry infilled walls are usually not included in structural analysis during the design process, but affect significantly the seismic performance because they behave with surrounding frames simultaneously during earthquakes. Many researchers have studied the effect of the masonry infilled walls, but several issues have been missed such as the increase of asymmetry by adding the full masonry infill, the size of the mean strength of the full masonry infill, and short column effect by the partial masonry infill. The issues were analytically investigated and the results showed that they should be checked at least by nonlinear pushover analysis in the seismic performance evaluation process. The results also confirm the weakness of the guideline of Korean Educational Development Institute where the seismic performance is basically assessed without structural analysis.

Prediction of Time-dependent Lateral Movement Induced by Differential Shortening in Tall Buildings Using Construction Stage Analysis

  • Ha, Taehun;Kim, Sangdae;Lee, Sungho
    • 국제초고층학회논문집
    • /
    • 제6권1호
    • /
    • pp.11-19
    • /
    • 2017
  • High-rise buildings move during construction due to time-dependent material properties of concrete (creep and shrinkage), construction sequences, and structural shapes. The building movements, including vertical and horizontal displacements, result from the sum of axial and lateral deformation of vertical members at each level. In addition to the vertical shortenings, the lateral movement induced by differential shortening can have adverse effects on the construction tolerance and serviceability of non-structural elements such as elevators and curtain walls. In this study a construction stage analysis method is developed to predict lateral movement induced by shortening, including the effect of creep and shrinkage. The algorithm of construction stage analysis is combined with the FE analysis program. It is then applied to predict lateral movement of a 58-story reinforced concrete building that was constructed in Kuala Lumpur, Malaysia. Gravity induced lateral movement of this building is predicted by the construction stage analysis. A field three-dimensional laser scanning survey is carried out to verify the prediction results, and satisfactory agreement is obtained.

15층 철근콘크리트 건물에 설치된 통신설비 면진장치 동적 거동에 대한 실험적 연구 (An Experimental Study on the Dynamic Behavior of the Seismic Isolator for Telecommunication Equipment Installed in a 15-Story Reinforced Concrete Building)

  • 최형석;정동혁;서영득;백은림
    • 한국지진공학회논문집
    • /
    • 제25권6호
    • /
    • pp.241-249
    • /
    • 2021
  • Communication facilities play an essential role in disaster situations. Therefore, communication facilities need to have structural and functional safety during and after earthquakes. Recently, technology for partial seismic isolation has been increasing to protect data facilities and communication equipment installed in buildings from earthquakes. However, excessive displacement may occur in the seismic isolator during an earthquake due to the resonance between the building and the seismic isolator having long-period characteristics, which may cause overturning and separation of the installed equipment. In this study, analytical and experimental studies were conducted to evaluate the safety of seismic isolators installed in high-rise buildings. It was confirmed that damages might occur in buildings' seismic isolator, with resonance characteristics of less than 1 Hz.

Behaviours of steel-fibre-reinforced ULCC slabs subject to concentrated loading

  • Wang, Jun-Yan;Gao, Xiao-Long;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.407-416
    • /
    • 2019
  • Novel steel fibre reinforced ultra-lightweight cement composite (ULCC) with compressive strength of 87.3MPa and density of $1649kg/m^3$ was developed for the flat slabs in civil buildings. This paper investigated structural behaviours of ULCC flat slabs according to a 4-specimen test program under concentrated loading and some reported test results. The investigated governing parameters on the structural behaviours of the ULCC slabs include volume fraction of the steel fibre and the patch loading area. The test results revealed that ULCC flat slabs with and without flexure reinforcement failed in different failure mode, and an increase in volume fraction of the steel fibre and loading area led to an increase in flexural resistance for the ULCC slabs without flexural reinforcement. Based on the experiment results, the analytical models were developed and also validated. The validations showed that the analytical models developed in this paper could predict the ultimate strength of the ULCC flat slabs with and without flexure reinforcement reasonably well.

Seismic demand estimation of RC frame buildings based on simplified and nonlinear dynamic analyses

  • Borzi, B.;Vona, M.;Masi, A.;Pinho, R.;Pola, D.
    • Earthquakes and Structures
    • /
    • 제4권2호
    • /
    • pp.157-179
    • /
    • 2013
  • Vulnerability studies on the existing building stock require that a large number of buildings is analyzed to obtain statistically significant evaluations of the seismic performance. Therefore, analytical evaluation methods need to be based on simplified methodologies of analysis which can afford the treatment of a large building population with a reasonable computational effort. Simplified Pushover-Based Earthquake Loss Assessment approach (SP-BELA), where a simplified methodology to identify the structural capacity of the building through the definition of a pushover curve is adopted, was developed on these bases. Main objective of the research work presented in this paper is to validate the simplified methodology implemented in SP-BELA against the results of more sophisticated nonlinear dynamic analyses (NLDAs). The comparison is performed for RC buildings designed only to vertical loads, representative of the "as built" in Italy and in Mediterranean countries with a building stock very similar to the Italian one. In NLDAs the non linear and degrading behaviour, typical of the structures under consideration when subjected to high seismic loads, is evaluated using models able to capture, with adequate accuracy, the non linear behaviour of RC structural elements taking into account stiffness degradation, strength deterioration, and pinching effect. Results show when simplified analyses are in good agreement with NLDAs. As a consequence, unsatisfactory results from simplified analysis are pointed out to address their current applicability limits.

Parameters affecting the fundamental period of infilled RC frame structures

  • Asteris, Panagiotis G.;Repapis, Constantinos C.;Tsaris, Athanasios K.;Di Trapani, Fabio;Cavaleri, Liborio
    • Earthquakes and Structures
    • /
    • 제9권5호
    • /
    • pp.999-1028
    • /
    • 2015
  • Despite the fact that the fundamental period appears to be one of the most critical parameters for the seismic design of structures according to the modal superposition method, the so far available in the literature proposals for its estimation are often conflicting with each other making their use uncertain. Furthermore, the majority of these proposals do not take into account the presence of infills walls into the structure despite the fact that infill walls increase the stiffness and mass of structure leading to significant changes in the fundamental period numerical value. Toward this end, this paper presents a detailed and indepth analytical investigation on the parameters that affect the fundamental period of reinforce concrete structure. The calculated values of the fundamental period are compared against those obtained from the seismic code and equations proposed by various researchers in the literature. From the analysis of the results it has been found that the number of storeys, the span length, the stiffness of the infill wall panels, the location of the soft storeys and the soil type are crucial parameters that influence the fundamental period of RC buildings.

Experimental and numerical investigations on reinforcement arrangements in RC deep beams

  • Husem, Metin;Yilmaz, Mehmet;Cosgun, Suleyman I.
    • Advances in concrete construction
    • /
    • 제13권3호
    • /
    • pp.243-254
    • /
    • 2022
  • Reinforced concrete (RC) deep beams are critical structural elements used in offshore pile caps, rectangular cross-section water tanks, silo structures, transfer beams in high-rise buildings, and bent caps. As a result of the low shear span ratio to effective depth (a/d) in deep beams, arch action occurs, which leads to shear failure. Several studies have been carried out to improve the shear resistance of RC deep beams and avoid brittle fracture behavior in recent years. This study was performed to investigate the behavior of RC deep beams numerically and experimentally with different reinforcement arrangements. Deep beams with four different reinforcement arrangements were produced and tested under monotonic static loading in the study's scope. The horizontal and vertical shear reinforcement members were changed in the test specimens to obtain the effects of different reinforcement arrangements. However, the rebars used for tension and the vertical shear reinforcement ratio were constant. In addition, the behavior of each deep beam was obtained numerically with commercial finite element analysis (FEA) software ABAQUS, and the findings were compared with the experimental results. The results showed that the reinforcements placed diagonally significantly increased the load-carrying and energy absorption capacities of RC deep beams. Moreover, an apparent plastic plateau was seen in the load-displacement curves of these test specimens in question (DE-2 and DE-3). This finding also indicated that diagonally located reinforcements improve displacement ductility. Also, the numerical results showed that the FEM method could be used to accurately predict RC deep beams'behavior with different reinforcement arrangements.