• Title/Summary/Keyword: Reinforced concrete coupling beam

Search Result 61, Processing Time 0.02 seconds

A Study on Post-Tensioned Reinforced Concrete Slab by the Beam Theory (포스트텐션된 철근콘크리트 슬래브의 보 이론에 의한 연구)

  • Han, Bong-Koo;Kim, Duck-Hyun
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.24-29
    • /
    • 2009
  • In this paper, a post-tensioned reinforced concrete slab was analyzed by the specially orthotropic laminates theory. Both the geometrical and material property of the cross section of the slab was considered symmetrically with respect to the neutral surface so that the bending extension coupling stiffness, $B_{ij}=0$, and $D_{16}=D_{26}=0$. Reinforced concrete slab behave as specially orthotropic plates. In general, the analytical solution for such complex systems is very difficult to obtain. Thus, finite difference method was used for analysis of the problem. In this paper, the finite difference method and the beam theory were used for analysis. The result of beam analysis was modified to obtain the solution of the plate analysis.

Drift Ratio-based Fragility Functions for Diagonally Reinforced Concrete Coupling Beams (대각보강된 철근콘크리트 연결보의 변위비 기반 취약도 함수 개발)

  • Lee, Chang Seok;Han, Sang Whan;Koh, Hyeyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.131-140
    • /
    • 2019
  • Diagonally reinforced concrete coupling beams (DRCBs) have been widely adopted in reinforced concrete (RC) bearing wall systems. DRCBs are known to act as a fuse element dissipating most of seismic energies imparted to the bearing wall systems during earthquakes. Despite such importance of DRCBs, the damage estimation of such components and the corresponding consequences within the knowledge of performance based seismic design framework is not well understood. In this paper, drift-based fragility functions are developed for in-plane loaded DRCBs. Fragility functions are developed to predict the damage and to decide the repair method required for DRCBs subjected to earthquake loading. Thirty-seven experimental results are collected from seventeen published literatures for this effort. Drift-based fragility functions are developed for four damage states of DRCBs subjected to cyclic and monotonic loading associated with minor cracking, severe cracking, onset of strength loss, and significant strength loss. Damage states are defined in a consistent manner. Cumulative distribution functions are fit to the empirical data and evaluated using standard statistical methods.

Seismic Behavior of Steel Coupling Beams (철골 커플링 보의 내진거동)

  • Park Wan-Shin;Yun Hyun-Do;Hwang Sun-Kyung;Han Byung-Chan;Han Min-Ki;Lee Jong-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.93-96
    • /
    • 2004
  • Since a ductile coupled shear wall system is the primary seismic load resisting systems of many structures, a coupling beams of these system must exhibit excellent ductility and energy absorption capacity. In this paper, the seismic response of coupled shear wall system is discussed. The cyclic response of steel coupling beams embedded into reinforced concrete boundary elements was studied. Three half-scale subassemblies representing a portion of a prototype structure were designed. constructed, and tested. The main test variables were the connection details of hybrid coupled shear wall. These efforts have resulted in details for increasing the seismic capacity of steel coupling beam in the seismic behavior of buildings.

  • PDF

Analysis of Reinforced Concrete Slab Bridges by the Composite Laminates Theory (복합적층판 이론에 의한 철근콘크리트 슬래브교의 해석)

  • Han, Bong-Koo;Kim, Duck-Hyun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • In this paper, A reinforced concrete slab bridges is analyzed by the composite laminates theory. Both the geometry and the material of the cross section of the reinforced concrete slab bridge are considered symmetrical with respect to the mid-surface so that the bending extension coupling stiffness, Bij = 0, and D16 = D26 = 0. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of rule of mixture. This slab with simple support is under uniformly distributed vertical and axial loads. In this paper, the finite difference method and specially orthotropic laminates theory are used for analysis. The result of specially orthotropic laminates theory analysis is modified to obtain the solution of the beam analysis. The result of this paper can be used for reinforced concrete slab analysis by the engineers with undergraduate study in near future.

  • PDF

Direct Inelastic Design of Reinforced Concrete Members Using Strut-and-Tie Model (스트럿-타이 모델을 이용한 철근콘크리트 부재의 직접 비탄성 설계)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.345-356
    • /
    • 2008
  • In the previous study, direct inelastic strut-and-tie model (DISTM) was developed to perform inelastic design of reinforced concrete members by using linear analysis for their secant stiffness. In the present study, for convenience in design practice, the DISTM was further simplified so that inelastic design of reinforced concrete members can be performed by a run of linear analysis, without using iterative calculations. In the simplified direct inelastic strut-and-tie model (S-DISTM), a reinforced concrete member is idealized with compression strut of concrete and tension tie of reinforcing bars. For the strut and tie elements, elastic stiffness or secant stiffness is used according to the design strategy intended by engineer. To define the failure criteria of the strut and tie elements, concrete crushing and reinforcing bar fracture were considered. The proposed method was applied to inelastic design of various reinforced concrete members including deep beam, coupling beam, and shear wall. The design results were compared with the properties and the deformation capacities of the test specimens.

Nonlinear modeling parameters of RC coupling beams in a coupled wall system

  • Gwon, Seongwoo;Shin, Myoungsu;Pimentel, Benjamin;Lee, Deokjung
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.817-842
    • /
    • 2014
  • ASCE/SEI 41-13 provides modeling parameters and numerical acceptance criteria for various types of members that are useful for evaluating the seismic performance of reinforced concrete (RC) building structures. To accurately evaluate the global performance of a coupled wall system, it is crucial to first properly define the component behaviors (i.e., force-displacement relationships of shear walls and coupling beams). However, only a few studies have investigated on the modeling of RC coupling beams subjected to earthquake loading to date. The main objective of this study is to assess the reliability of ASCE 41-13 modeling parameters specified for RC coupling beams with various design details, based on a database compiling almost all coupling beam tests available worldwide. Several recently developed coupling beam models are also reviewed. Finally, a rational method is proposed for determining the chord yield rotation of RC coupling beams.

Behavioral Characteristics and Energy Dissipation Capacity of Short Coupling Beams with Various Reinforcement Layouts (다양한 배근상세를 갖는 짧은 연결보의 주기거동 특성과 에너지소산능력의 평가)

  • Eom, Tae-Sung;Park, Hong-Gun;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.203-212
    • /
    • 2008
  • The cyclic behavior and energy dissipation mechanism of short coupling beams with various reinforcement layouts were studied. For numerical analysis of coupling beams, nonlinear truss model was used. The results of numerical analysis showed that the coupling beams with conventional reinforcement layout showed pinched cyclic behavior without significant energy dissipation, whereas the coupling beams with diagonal reinforcement exhibited stable cyclic behavior without pinching. The energy dissipation of the coupling beams was developed mainly by diagonal reinforcing bars developing large plastic strains rather than concrete which is a brittle material Based on this result, simplified equations for evaluating the energy dissipation of coupling beams were developed. For verification, the predicted energy dissipation was compared with the test results. The results showed that the simplified equations can predict the energy dissipation of short coupling beams with shear span-to-depth ratio less than 1.25 with reasonable precision, addressing various design parameters such as reinforcement layout, shear span-to-depth ratio, and the magnitude of inelastic displacement. The proposed energy equations can be easily applied to performance-based seismic evaluation and design of reinforced concrete structures and members.

Seismic behavior of coupled wall structure with innovative quickly replaceable coupling beams

  • Li, Yong;Yu, Haifeng;Liang, Xiaoyong;Yu, Jianjun;Li, Pengcheng;Wang, Wei;Wang, Qizhi
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.293-303
    • /
    • 2022
  • In order to improve the seismic resilience of coupled wall structure, coupling beam with fuse has been developed to reduce the post-earthquake damage. However, the fuses often have a build-up I-shaped section and are relatively heavy to be replaced. Moreover, the fuse and the beam segments are usually connected by bolts and it is time-consuming to replace the damaged fuse. For reducing the repair time and cost, a novel quickly replaceable coupling beam with buckling-restrained energy dissipaters is developed. The fuse of the proposed coupling beam consists of two chord members and bar-typed energy dissipaters placed at the corners of the fuse. In this way, the weight of the energy dissipater can be greatly reduced. The energy dissipaters and the chords are connected with hinge and it is convenient to take down the damaged energy dissipater. The influence of ratio of the length of coupling beam to the length of fuse on the seismic performance of the structure is also studied. The seismic performance of the coupled wall system with the proposed coupling beam is compared with the system with reinforced concrete coupling beams. Results indicated that the weight and post-earthquake repair cost of the proposed fuse can be reduced compared with the typical I-shaped fuse. With the increase of the ratio of the beam length to the fuse length, the interstory drift of the structure is reduced while the residual fuse chord rotation is increased.

Seismic Performance of Steel Coupling Beam and RC Shear Wall under Lateral Cyclic Load (주기하중 하에서 철근 콘크리트 전단벽체와 철골 연결보 접합부의 내진성능)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.591-602
    • /
    • 2015
  • In this paper, cyclic loading test was performed to evaluate the seismic performance of the steel coupling beam and RC shear wall. The test parameter was reinforcement detail of the shear wall. For the shear wall which was designed in accordance with the current design codes, a premature bearing failure occurred at the face of the wall. On the other hand, the bearing failure of walls was prevented due to the new type of reinforcement details. Test results indicated that the vertical reinforcements were more affected to the shear strength of the coupled shear wall than the horizontal reinforcement. Based on the failure mode, concrete stress distribution above and below flanges of the embedded steel beam was proposed. Assuming proposed concrete stress distribution, load resistance was predicted and it was agree well with test data.

Shear Strength Evaluation of Steel Fiber Reinforced Concrete Coupling Beams with Conventional Reinforcements Details (일반 철근 배근 상세를 갖는 강섬유 보강 콘크리트 연결보의 전단강도 평가)

  • Seong-Hwi Song;Dong-Hee Son;Baek-Il Bae;Chang-Sik Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.37-45
    • /
    • 2023
  • The purpose of this study is to prevent diagonal tension failure of existing conventional coupling beams, increase the shear strength of conventional coupling beams, and quantitatively evaluate the increase. Steel fibers can improve shear strength and partially change the failure mechanism, but this is the result of research on general RC beams and columns, and research on the shear strength enhancement of conventional coupling beams for steel fiber reinforced concrete is still lacking. Therefore, in order to confirm the increased shear strength caused by steel fiber and the resulting change in failure mechanism, three specimens were fabricated with the steel fiber volume fraction as a variable (0%, 1%, 2%) and repeated loading experiments were performed. As a result, the shear strength of the specimens reinforced with steel fibers (1%, 2%) increased as the shear resistance contribution of concrete increased after the maximum strength was developed compared to the specimens without it (0%).