• Title/Summary/Keyword: Reinforced concrete beam-column

Search Result 450, Processing Time 0.027 seconds

Performance of hybrid beam-column joint cast with high strength concrete

  • Al-Osta, M.A.;Al-Khatib, A.M.;Baluch, M.H.;Azad, A.K.;Rahman, M.K.
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.603-617
    • /
    • 2017
  • This paper presents investigation into the behavior of beam-column joints, with the joint region concrete being replaced by steel fiber reinforced concrete (SFRC) and by ultra-high performance concrete (UHPC). A total of ten beam-column joint specimens (BCJ) were tested experimentally to failure under monotonic and cyclic loading, with the beam section being subjected to flexural loading and the column to combined flexural and axial loading. The joint region essentially transferred shear and axial stresses as received from the column. Steel fiber reinforced concrete (SFRC) and ultra-high performance concrete (UHPC) were used as an innovative construction and/or strengthening scheme for some of the BCJ specimens. The reinforced concrete specimens were reinforced with longitudinal steel rebar, 18 mm, and some specimens were reinforced with an additional two ties in the joint region. The results showed that using SFRC and UHPC as a replacement concrete for the BCJ improved the joint shear strength and the load carrying capacity of the hybrid specimens. The mode of failure was also converted from a non-desirable joint shear failure to a preferred beam flexural failure. The effect of the ties in the SFRC and UHPC joint regions could not be observed due to the beam flexural failure. Several models were used in estimating the joint shear strength for different BCJ specimens. The results showed that the existing models yielded wide-ranging values. A new concept to take into account the influence of column axial load on the shear strength of beam-column joints is also presented, which demonstrates that the recommended values for concrete tensile strength for determination of joint shear strength need to be amended for joints subject to moderate to high axial loads. Furthermore, finite element model (FEM) simulation to predict the behaviour of the hybrid BCJ specimens was also carried out in an ABAQUS environment. The result of the FEM modelling showed good agreement with experimental results.

Nonlinear modeling of a RC beam-column connection subjected to cyclic loading

  • Dominguez, Norberto;Perez-Mota, Jesus
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.299-310
    • /
    • 2018
  • When reinforced concrete structures are subjected to strong seismic forces, their beam-column connections are very susceptible to be damaged during the earthquake event. Consequently, structural designers try to fit an important quantity of steel reinforcement inside the connection, complicating its construction without a clear justification for this. The aim of this work is to evaluate -and demonstrate- numerically how the quantity and the array of the internal steel reinforcement influences on the nonlinear response of the RC beam-column connection. For this, two specimens (extracted from an experimental test of 12 RC beam-column connections reported in literature) were modeled in the Finite Element code FEAP considering different stirrup's arrays. The nonlinear response of the RC beam-column connection is evaluated taking into account the nonlinear thermodynamic behavior of each component: a damage model is used for concrete; a classical plasticity model is adopted for steel reinforcement; the steel-concrete bonding is considered perfect without degradation. At the end, the experimental responses obtained in the tests are compared to the numerical results, as well as the distribution of shear stresses and damage inside the concrete core of the beam-column connection, which are analyzed for a low and high state of confinement.

Prediction of Nonlinear Shear Behavior of Reinforced Concrete Beam-Column Joints (철근콘크리트 보-기둥 접합부의 비선형 전단거동예측)

  • Cho, Chang-Geun;Woo, Sung-Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.29-36
    • /
    • 2009
  • The present study emphasizes a nonlinear model to predict the shear behaviour of reinforced concrete interior beam-column joints. To model the shear behaviour of a panel zone in the beam-column joint, a modified softened truss model theory for in-plane shear prediction was introduced. This relationship was changed to define the characteristics for the rotational spring to represent the shear deformation in the joint by an equivalent moment-rotation relationship from the joint equilibrium. The analysis model was compared with experiments on reinforced concrete interior beam-column joints that were subjected to axial and shear forces, and the current model was found to accurately predict not only the shear force but also the shear deformation in the joint.

Improvement and Evaluation of Seismic Performance for Reinforced Concrete Beam-Column Joints Using High Performance Embedded FRP (고성능 FRP를 활용한 철근콘크리트 보-기둥 접합부의 내진 성능 평가 및 개선)

  • Ha, Gee-Joo;Shin, Jong-Hack;Kang, Hyun-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.385-392
    • /
    • 2011
  • In this study, experimental research was carried out to evaluate and improve the seismic performance of reinforced concrete beam-column joint regions using strengthening materials (steel plate, carbon fiber sheet, and embedded carbon fiber rod) in existing reinforced concrete buildings. Six specimens of retrofitted beam-column joints are constructed using various retrofitting materials and tested for their retrofit performances. Specimens designed by retrofitting the beam-column joint regions (LBCJ series) of existing reinforced concrete building showed a stable mode of failure and an increase in load-carrying capacity due to the effect of crack control at the time of initial loading and confinement from retrofitting materials during testing. Specimens of LBCJ series, designed by the retrofitting of FRP in reinforecd beam-column joint regions increased its maximum load carrying capacity by 26~50% and its energy dissipation capacity by 13.0~14.4% when compared to standard specimen of LBCJC with a displacement ductility of 4.

Strain penetration of high-strength steel bars anchored in reinforced concrete beam-column connections

  • Li, Ling;Zheng, Wenzhong;Wang, Ying
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.367-382
    • /
    • 2019
  • This paper presents experimental and analytical investigations on additional fixed-end rotations resulting from the strain penetration of high-strength reinforcement in reinforced concrete (RC) beam-column connections under monotonic loading. The experimental part included the test of 18 interior beam-column connections with straight long steel bars and 24 exterior beam-column connections with hooked and headed steel bars. Rebar strains along the anchorage length were recorded at the yielding and ultimate states. Furthermore, a numerical program was developed to study the effect of strain penetration in beam-column connections. The numerical results showed good agreement with the test results. Finally, 87 simulated specimens were designed with various parameters based on the test specimens. The effect of concrete compressive strength ($f_c$), yield strength ($f_y$), diameter ($d_b$), and anchorage length ($l_{ah}$) of the reinforcement in the beam-column connection was examined through a parametric study. The results indicated that additional fixed-end rotations increased with a decrease in $f_c$ and an increase in $f_y$, $d_b$ and $l_{ah}$. Moreover, the growth rate of additional fixed-end rotations at the yielding state was faster than that at the ultimate state when high-strength steel bars were used.

Interaction of internal forces of interior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Jiangli
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.427-443
    • /
    • 2014
  • This paper presents detailed analysis of the internal forces of interior beam-column joints of reinforced concrete (RC) frames under seismic action, identifies critical joint sections, proposes consistent definitions of average joint shear stress and average joint shear strain, derives formulas for calculating average joint shear and joint torque, and reports simplified analysis of the effects of joint shear and torque on the flexural strengths of critical joint sections. Numerical results of internal joint forces and flexural strengths of critical joint sections are presented for a pair of concentric and eccentric interior connections extracted from a seismically designed RC frame. The results indicate that effects of joint shear and torque may reduce the column-to-beam flexural strength ratios to below unity and lead to "joint-yielding mechanism" for seismically designed interior connections. The information presented in this paper aims to provide some new insight into the seismic behavior of interior beam-column joints and form a preliminary basis for analyzing the complicated interaction of internal joint forces.

Effect of geometrical configuration on seismic behavior of GFRP-RC beam-column joints

  • Ghomia, Shervin K.;El-Salakawy, Ehab
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.313-326
    • /
    • 2020
  • Glass fiber-reinforced polymer (GFRP) bars have been introduced as an effective alternative for the conventional steel reinforcement in concrete structures to mitigate the costly consequences of steel corrosion. However, despite the superior performance of these composite materials in terms of corrosion, the effect of replacing steel reinforcement with GFRP on the seismic performance of concrete structures is not fully covered yet. To address some of the key parameters in the seismic behavior of GFRP-reinforced concrete (RC) structures, two full-scale beam-column joints reinforced with GFRP bars and stirrups were constructed and tested under two phases of loading, each simulating a severe ground motion. The objective was to investigate the effect of damage due to earthquakes on the service and ultimate behavior of GFRP-RC moment-resisting frames. The main parameters under investigation were geometrical configuration (interior or exterior beam-column joint) and joint shear stress. The performance of the specimens was measured in terms of lateral load-drift response, energy dissipation, mode of failure and stress distribution. Moreover, the effect of concrete damage due to earthquake loading on the performance of beam-column joints under service loading was investigated and a modified damage index was proposed to quantify the magnitude of damage in GFRP-RC beam-column joints under dynamic loading. Test results indicated that the geometrical configuration significantly affects the level of concrete damage and energy dissipation. Moreover, the level of residual damage in GFRP-RC beam-column joints after undergoing lateral displacements was related to reinforcement ratio of the main beams.

Analysis of rectangular hybrid steel-GFRP reinforced concrete beam columns

  • El-Heloua, Rafic G.;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.245-260
    • /
    • 2015
  • In this study, nominal moment-axial load interaction diagrams, moment-curvature relationships, and ductility of rectangular hybrid beam-column concrete sections are analyzed using the modified Hognestad concrete model. The hybrid columns are primarily reinforced with steel bars with additional Glass Fiber Reinforced Polymer (GFRP) control bars. Parameters investigated include amount, pattern, location, and material properties of concrete, steel, and GFRP. The study was implemented using a user defined comprehensive $MATLAB^{(R)}$ simulation model to find an efficient hybrid section design maximizing strength and ductility. Generating lower bond stresses than steel bars at the concrete interface, auxiliary GFRP bars minimize damage in the concrete core of beam-column sections. Their usage prevents excessive yielding of the core longitudinal bars during frequent moderate cyclic deformations, which leads to significant damage in the foundations of bridges or beam-column spliced sections where repair is difficult and expensive. Analytical results from this study shows that hybrid steel-GFRP composite concrete sections where GFRP is used as auxiliary bars show adequate ductility with a significant increase in strength. Results also compare different design parameters reaching a number of design recommendations for the proposed hybrid section.

Ductile Behavior of High Strength Reinforced Concrete Beam-Column Joint (고강도 철근 및 고강도 콘크리트를 사용한 보-기둥 접합부의 연성거동)

  • 이정한;유영찬;이원호;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.537-540
    • /
    • 1999
  • The primary objective of this study is to make a contribution to the construction of 40~60 story R/C high rise building by developing the reinforcing details which can improve the seismic performance of high-strength (f'c=700kg/$\textrm{cm}^2$, fy=4000, 8000kg/$\textrm{cm}^2$) R/C beam-column joints. And the purpose of this study is to investigate experimentally the effect of load history on the total energy dissipation capacity of reinforced concrete flexural members. The reinforcing details which can make beam plastic hinging zones moved and spreaded from the column face is proposed to insure the ductile behavior of high-strength RC beam-column joints. The intermediate reinforcement which is horizontally anchored by interlinking each intermediate reinforcements is proposed and tested to examine the mechanical performance of proposed details. Main variables are the shape of the intermediate reinforcements and yield strength of rebars. From the test results, the newly proposed intermediate reinforcement details can move and spread the beam plastic hinging zone about 1.0d from the column face.

  • PDF

Dynamic Response of Reinforced Concrete Beams Following Instantaneous Removal of a Bearing Column

  • Tian, Ying;Su, Youpo
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.19-28
    • /
    • 2011
  • This paper documents an experimental study of dynamic response of reinforced concrete beams following instantaneous removal of a bearing column. Four half-scale specimens representing two-span beam bridging across the removed column were tested. The test boundary conditions simulated rotational and longitudinal restraints imposed on a frame beam by the neighboring structural components. The gravity loads were simulated by attaching mass blocks on the beams at three locations. Dynamic loading effects due to sudden removal of a column were simulated by quickly releasing the supporting force at the middle of the specimens. The experimental study investigated the load-carrying capacity of beams restrained longitudinally at the boundaries and dynamic impact on forces. The tests confirmed the extra flexural strength provided by compressive arch action under dynamic loading. The tests also indicated that the dynamic amplification effects on forces were much lower than that assumed in the current design guideline for progressive collapse.