• Title/Summary/Keyword: Reinforced concrete beam-column

Search Result 450, Processing Time 0.028 seconds

Predicting shear strength of RC exterior beam-column joints by modified rotating-angle softened-truss model

  • Wong, Simon H.F.;Kuang, J.S.
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.59-70
    • /
    • 2011
  • A theoretical model known as the modified rotating-angle softened-truss model (MRA-STM), which is a modification of Rotating-Angle Softened-Truss Model and Modified Compression Field Theory, is presented for the analysis of reinforced concrete membranes in shear. As an application, shear strength and behaviour of reinforced concrete exterior beam-column joints are analysed using the MRA-STM combining with the deep beam analogy. The joints are considered as RC panels and subjected to vertical and horizontal shear stresses from adjacent columns and beams. The strut and truss actions in a beam-column joint are represented by the effective transverse compression stresses and a softened concrete truss in the proposed model. The theoretical predictions of shear strength of reinforced concrete exterior beam-column joints from the proposed model show good agreement with the experimental results.

Structural Behavior of Beam-Column Joints Consisting of Composite Structures

  • Lee, Seung-Jo;Park, Jung-Min;Kim, Wha-Jung
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.111-120
    • /
    • 2002
  • This study proposes a joint model consisting of different types of members as a new structural system, and then investigates the resulting structural behavior. The joint model consists of a concrete-filled steel tube column (CFT) together with a steel reinforced concrete at the end plus reinforced concrete beam at the center. For comparison, two other joint models were designed, that are, a CPT with a reinforced concrete beam, and a CFT with a steel reinforced concrete at the end plus steel concrete beam at the center, then their joint capacity and rigidity, energy absorption capacity, etc., were all investigated. From the results, the CFT column with a steel reinforced concrete at the end plus steel concrete beam at the center was outstanding in terms of its capacity and rigidity. The results of this analysis demonstrate that an adequate connection type and reinforcement method with different materials of increasing the rigidity, thereby producing a capacity improvement along with protection from pre-fractures.

  • PDF

A study on rotational behaviour of a new industrialised building system connection

  • Moghadasi, Mostafa;Marsono, Abdul Kadir;Mohammadyan-Yasouj, Seyed Esmaeil
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.245-255
    • /
    • 2017
  • The performance of an Industrialised Building System (IBS) consists of prefabricated reinforced concrete components, is greatly affected by the behaviour of the connection between beam and columns. The structural characteristics parameters of a beam-to-column connection like rotational stiffness, strength and ductility can be explained by load-rotation relationship of a full scale H-subframe under gravitational load. Furthermore, the connection's degree of rigidity directly influences the behaviour of the whole frame. In this research, rotational behaviour of a patented innovative beam-to-column connection with unique benefits like easy installation, no wet work, no welding work at assembly site, using a hybrid behaviour of steel and concrete, easy replacement ability, and compatibility with architecture was investigated. The proposed IBS beam-to-column connection includes precast concrete components with embedded steel end connectors. Two full-scale H-subframes constructed with a new IBS and conventional cast in-situ reinforced concrete system beam-to-column connections were tested under incremental static loading. In this paper, load-rotation relationship and ratio of the rigidity of IBS beam-to-column connection are studied and compared with conventional monolithic reinforced concrete connection. It is concluded that this new IBS beam-to-column connection benefits from more rotational ductility than the conventional reinforced concrete connection. Furthermore, the semi-rigid IBS connection rigidity ratio is about 44% of a full rigid connection.

Experimental and numerical studies on seismic behaviour of exterior beam-column joints

  • Asha, P.;Sundararajan, R.
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.221-234
    • /
    • 2014
  • A nonlinear finite element analysis using ANSYS is used to evaluate the seismic behavior of reinforced concrete exterior beam-column joints. The behavior of the finite element models under cyclic loading is compared with the experimental results. Two beam-column joint specimens (SH and SHD) with square hoop confinement in joint and throughout the column with detailing as per IS 13920 are studied. The specimen SHD was provided with additional diagonal bars from column to beam to relocate the plastic hinge formation from beam-column interface. The load-displacement relationship, joint shear stress and strain in beam obtained from numerical study showed good agreement with the experimental results. This investigation proves that seismic behaviour of reinforced concrete beam-column joints under reversed cyclic loading can be evaluated successfully using finite element modeling and analysis.

Influence of shear deformation of exterior beam-column joints on the quasi-static behavior of RC framed structures

  • Costa, Ricardo J.T.;Gomes, Fernando C.T.;Providencia, Paulo M.M.P.;Dias, Alfredo M.P.G.
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.393-411
    • /
    • 2013
  • In the analysis and design of reinforced concrete frames beam-column joints are sometimes assumed as rigid. This simplifying assumption can be unsafe because it is likely to affect the distributions of internal forces and moments, reduce drift and increase the overall load-carrying capacity of the frame. This study is concerned with the relevance of shear deformation of beam-column joints, in particular of exterior ones, on the quasi-static behavior of regular reinforced concrete sway frames. The included parametric studies of a simple sub-frame model reveal that the quasi-static monotonic behavior of unbraced regular reinforced concrete frames is prone to be significantly affected by the deformation of beam-column joints.

Behavior of geopolymer and conventional concrete beam column joints under reverse cyclic loading

  • Raj, S. Deepa;Ganesan, N.;Abraham, Ruby;Raju, Anumol
    • Advances in concrete construction
    • /
    • v.4 no.3
    • /
    • pp.161-172
    • /
    • 2016
  • An experimental investigation was carried out on the strength and behavior plain and fiber reinforced geopolymer concrete beam column joints and the results were compared with plain and steel fiber reinforced conventional concrete beam column joints. The volume fraction of fibers used was 0.5%. A total of six Geopolymer concrete joints and four conventional concrete joints were cast and tested under reversed cyclic loading to evaluate the performance of the joints. First crack load, ultimate load, energy absorption capacity, energy dissipation capacity stiffness degradation and moment-curvature relation were evaluated from the test results. The comparison of test results revealed that the strength and behavior of plain and fiber reinforced geopolymer concrete beam column joints are marginally better than corresponding conventional concrete beam column joints.

Performance of headed FRP bar reinforced concrete Beam-Column Joint

  • Md. Muslim Ansari;Ajay Chourasia
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.71-81
    • /
    • 2024
  • Fiber Reinforced Polymer (FRP) bars have now been widely adopted as an alternative to traditional steel reinforcements in infrastructure and civil industries worldwide due variety of merits. This paper presents a numerical methodology to investigate FRP bar-reinforced beam-column joint behavior under quasi-static loading. The proposed numerical model is validated with test results considering load-deflection behavior, damage pattern at beam-column joint, and strain variation in reinforcements, wherein the results are in agreement. The numerical model is subsequently employed for parametric investigation to enhance the end-span beam-column joint performance using different joint reinforcement systems. To reduce the manufacturing issue of bend in the FRP bar, the headed FRP bar is employed in a beam-column joint, and performance was investigated at different column axial loads. Headed bar-reinforced beam-column joints show better performance as compared to beam-column joints having an L-bar in terms of concrete damage, load-carrying capacity, and joint shear strength. The applicability and efficiency of FRP bars at different story heights have also been investigated with varying column axial loads.

Joint Shear Failure of Reinforced Concrete Interior Beam-Column Joint (내부 보-기둥 접합부의 전단파괴)

  • 이민섭;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.303-308
    • /
    • 2000
  • The design of column joint is an important part of earthquake resistant design of reinforced concrete moment resisting frames. Beam column joints must provide sufficient stiffness and strength to resist and sustain the loads induced by adjacent beams and columns. This paper investigates the difference of the current design codes which provide a different approach for the design of beam column joint in seismic zone. The model provided by Hitoshi Shiohara(1998) is reviewed in this paper, which provides a good relationship between moment and shear action of interior beam column joint and a role shear reinforcement according to their position.

  • PDF

A Study on Development for Joint of Concrete Filled Steel Tube Column and P.C Reinforced Concrete Beam ( I ) The Investigation of Propriety for Model of Beam-to-Column Joint with Key Parameters, such as Section Type and Axial Force Ratio (콘크리트 충전강관 기둥과 PC 철근 콘크리트 보 접합부의 개발에 관한 연구( I ) -단면형상 및 축력비를 변수로 한 접합부 모델의 적합성 검토-)

  • Park, Jung Min;Kim, Wha Jung;Moon, Tae Sup;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.85-94
    • /
    • 1996
  • This paper investigated structural behaviors of joint of concrete filled steel tube column and P.C reinforced concrete beam through a series of hysteretic behavior experiment. The results are summarised as follows: (1) The joint stiffness of concrete filled square steel tube column and P.C reinforecd beam was higher than that of concrete filled circular steel tube column and P.C reinforecd beam, and it was decreased as the increase of the number of hysteretic cycle. (2) The aspects of the hysteretic behavior in the joint was stable as the increase of the number of hysteretic cycle, and rotation resisting capacity of joint of concrete filled square steel tube column and P.C reinforced concrete beam was higher than those of the concrete filled circular steel tube column and P.C reinforced concrete beam. (3) Some restriction must be put upon the ratio of axial force in this joint model because the load carrying capacity was decreased by flexural and flexural-torsional buckling in case of the ratio of axial force 0.6. (4) The emprical formula to predict the ultimate capacity of joint model to superimpose shearing strength of steel web(H section) and bending strength of reinforced concrete beam was expected.

  • PDF

Improvement and Evaluation of Seismic Performance of Reinforced Concrete Exterior Beam-Column Joints using Hybrid Retrofitting with AFRP Sheets and Embedded FRP Reinforcements (AFRP 쉬트와 매입형 FRP 보강재를 복합 보강한 R/C 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Yi, Dong Ryul;Kang, Hyun-Wook
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.35-40
    • /
    • 2018
  • In this study, experimental research was carried out to evaluate the seismic performance of reinforced concrete exterior beam-column joint regions using hybrid retrofitting with AFRP sheets and embedded CFRP reinforcements in existing reinforced concrete building. Therefore it was constructed and tested three specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of existing reinforced concrete structure, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and confinement of retrofitting materials during testing. Specimens RBCJ-SRA3 designed by the retrofitting of AFRP sheets and embedded CFRP reinforcements in reinforced exterior beam-column joint regions were increased its maximum load carrying capacity by 1.86 times and its energy dissipation capacity by 1.65 times in comparison with standard specimen RBCJ for a displacement ductility of 5.