• Title/Summary/Keyword: Reinforced Rubber

Search Result 186, Processing Time 0.026 seconds

Seismic performance assessment of reinforced concrete bridge piers supported by laminated rubber bearings

  • Kim, T.H.;Kim, Y.J.;Shin, H.M.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.3
    • /
    • pp.259-278
    • /
    • 2008
  • This paper presents a nonlinear finite element procedure accounting for the effects of geometric as well as material nonlinearities for reinforced concrete bridge piers supported by laminated rubber bearings. Reinforced concrete bridge piers supported by laminated rubber bearings and carrying a cyclic load were analyzed by using a special purpose, nonlinear finite element program, RCAHEST. For reinforced concrete, the proposed robust nonlinear material model captures the salient response characteristics of the bridge piers under cyclic loading conditions and addresses with the influence of geometric nonlinearity on post-peak response of the bridge piers by transformations between local and global systems. Seismic isolator element to predict the behaviors of laminated rubber bearings is also developed. The seismic performance of reinforced concrete bridge piers supported by laminated rubber bearings is assessed analytically. The results show good correlation between the experimental findings and numerical predictions, and demonstrate the reliability and robustness of the proposed analytical model. Additionally, the studies and discussions presented in this investigation provide an insight into the key behavioral aspects of reinforced concrete bridge piers supported by laminated rubber bearings.

Effects of Interphase Condition and Short-fiber Content on the Fatigue Properties of Reinforced Rubber (계면상 조건과 단섬유 함유량이 강화고무의 피로특성에 미치는 영향)

  • 류상렬;이동주
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.10-17
    • /
    • 2000
  • The fatigue properties of short nylon66 fiber reinforced Chloroprene rubber have been investigated as functions of interphase conditions and fiber content. The spring constant of rubber decreased about 21% after the fatigue test. On the contrary, that of reinforced rubber increased in all cases. The changing rate of spring constant for reinforced rubber decreased with increasing fiber content. This means that the better interphase condition, the smaller changing rate of spring constant. Temperature of matrix increased about 2.5 times and one of reinforced rubber showed 1.7∼2 times up after the test. The changing rate of temperature for reinforced rubber during fatigue test decreased with increasing fiber content. It is found that the better interphase condition, the smaller changing rate of specimen temperature at the same fiber content. Double coatings of bonding agent 402 and rubber solution became the best interphase model in this study. And, we have investigated the possibility of applying short-fiber reinforced rubber to automotive engine mount rubber, bush and stopper.

  • PDF

Compression of hollow-circular fiber-reinforced rubber bearings

  • Pinarbasi, Seval;Okay, Fuad
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.361-384
    • /
    • 2011
  • Earlier studies on hollow-circular rubber bearings, all of which are conducted for steel-reinforced bearings, indicate that the hole presence not only decreases the compression modulus of the bearing but also increases the maximum shear strain developing in the bearing due to compression, both of which are basic design parameters also for fiber-reinforced rubber bearings. This paper presents analytical solutions to the compression problem of hollow-circular fiber-reinforced rubber bearings. The problem is handled using the most-recent formulation of the "pressure method". The analytical solutions are, then, used to investigate the effects of reinforcement flexibility and hole presence on bearing's compression modulus and maximum shear strain in the bearing in view of four key parameters: (i) reinforcement extensibility, (ii) hole size, (iii) bearing's shape factor and (iv) rubber compressibility. It is shown that the compression stiffness of a hollow-circular fiber-reinforced bearing may decrease considerably as reinforcement flexibility and/or hole size increases particularly if the shape factor of the bearing is high and rubber compressibility is not negligible. Numerical studies also show that the existence of even a very small hole can increase the maximum shear strain in the bearing significantly, which has to be considered in the design of such annular bearings.

Effect of Interphase Condition and Fiber Content on the Dynamic Properties of Short-fiber Reinforced Chloroprene Rubber (계면상 조건과 단섬유 함유량이 단섬유 강화CR의 동적특성에 미치는 영향)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1151-1156
    • /
    • 2003
  • The dynamic properties of short-fiber reinforced Chloroprene rubber for vibration isolators have been studied as functions of interphase conditions and fiber content. The loss factor showed the maximum at strain amplitude 2%, and increased 0.09 for matrix, 0.05 for reinforced rubber with increasing frequency respectively. The dynamic ratio rapidly decreased with increasing strain amplitude, and some increased with increasing frequency. The better interphase condition showed the lower dynamic ratio. Therefore, the short-fiber reinforced rubber could have the better isolation in frequency ratio(${\sqrt{2}}min$.) compared to frequency ratio(${\sqrt{2}}max$.). And we have investigate the possibility of applying short-fiber reinforced rubber to automotive engine mount.

  • PDF

Reinforcing Performance of Networked Silicas in Silica-filled Chloroprene Rubber Compounds

  • Ryu, Changseok;Yang, Jae-Kyoung;Park, Wonhyeong;Kim, Sun Jung;Kim, Doil;Seo, Gon;Kim, Wook-Soo;Ahn, Ki Woong;Kim, Beak Hwan
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.40-53
    • /
    • 2019
  • The physical properties of chloroprene rubber (CR) compounds reinforced with networked silicas were investigated by comparing them to those reinforced with conventional silica to observe the effect of the organic connection bonds combining silica particles on their cure, tensile, and aging performance. The introduction of networked silica to CR increase in silica content to 80 phr in rubber, while the content of conventional silica was limited to 60 phr. The CR compounds reinforced with networked silica showed higher resistance to combustion. The gradual increases in delta torque, Mooney viscosity, and modulus of silica-filled CR compounds with silica content were mainly attributed to the specific interaction between the chlorine atoms of CR and the hydroxyl groups of silica. The CR compounds reinforced with networked silica showed low compression set and heat build-up and maintained their high modulus even after thermal, oil, and ozone aging.

Seismie Performance Evaluation of Reinforced Concrete Bridge Piers Supported by Laminated Rubber Bearings (적층고무받침을 사용한 철근콘크리트 교각의 내진성능평가)

  • 김태훈;최정호;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.63-72
    • /
    • 2004
  • The purpose of this study is to evaluate seismic performance of reinforced concrete bridge piers supported by laminated rubber bearings. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. Seismic isolator element is developed to predict behaviors of laminated rubber bearings. The proposed numerical method for seismic performance evaluation of reinforced concrete bridge piers supported by laminated rubber bearings is verified by comparison with reliable experimental results.

An Experimental Study on Fiber Reinforced Elastomeric Bearing (섬유보강 면진베어링의 실험적 특성 해석)

  • 문병영;강경주;강범수;김계수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • In order to study the characteristics of fiber reinforced bearing, the steel plates of laminated rubber bearing were replaced with fibers which have same effects of steel plates. The comparison of vertical test and horizontal test of laminated rubber bearing and fiber reinforced bearing shows that the effective damping of fiber reinforced bearing is higher than laminated rubber bearing. This result implies the high energy dissipation ability of fiber reinforced bearing under earthquake excitation. These fiber reinforced bearing can be applied to the low-coast building.

A Study on Bursting Properties of Short-Fiber Reinforced Chloroprene Rubber (단섬유 강화고무의 파열특성 연구)

  • Ryu Sang-Ryeoul;Lee Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.543-549
    • /
    • 2006
  • The bursting properties under various conditions were investigated to ascertain the optimum conditions to yield the best properties. Fiber aspect ratio (AR: length of fiber/diameter of fiber), interphase condition and fiber content were considered as variables which impact the bursting pressure, bulge constant, torsional rigidity ratio. The bursting pressure of reinforced rubber increases up to 8.73 times compared to the virgin material. The better interphase condition shows the higher bursting pressure at given AR and fiber content. The bulge constant and torsional rigidity highly decrease with increasing AR and better interphase condition at same fiber content. The bulge constant and torsional rigidity reveal the minimum of 11% and 0.6% of the matrix, respectively. The bursted shape after test shows the different patterns between unfilled and reinforced rubbers. The case of virgin rubber shows a radiating shape while that of reinforced rubber shows a fluctuating straight line. Overall, it was found that the fiber AR and interphase condition have an important effect on bursting properties.

Shear Properties of Bottom Ash-Crumb Rubber Mixture Reinforced with Waste Fishing Net Using Triaxial Test (삼축압축시험에 의한 폐어망 보강 저회-폐타이어 혼합토의 전단특성)

  • Kwon, Soon-Jang;Kim, Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.81-91
    • /
    • 2013
  • This paper investigates the shear properties of bottom ash-crumb rubber mixture reinforced with waste fishing net. Mixtures used in this experiment were prepared at 2 different percentages of crumb rubber (2 mm~10 mm) content (i.e., 0%, 50% by weight of the dry bottom ash). In this study several series of triaxial tests were carried out on the six different specimens : unreinforced bottom ash, reinforced bottom ash with 1 or 2 layers, unreinforced mixture, reinforced mixture with 1 or 2 layers. The experimental results indicated that the shear properties of bottom ash-crumb rubber mixture were strongly influenced by reinforcing layer of waste fishing net and crumb rubber addition. It is shown that the internal friction angle of bottom ash-crumb rubber mixture decrease with addition of crumb rubber due to the compression properties of crumb rubber. However, the internal friction angle of the mixture increased with an increase in reinforcing layer due to interlocking effect and friction between mixture and waste fishing net.

The Fracture Toughness and Crack Propagation behavoir of Short-fiber Reinforced Ruber (단섬유 강화고무의 파괴인성 및 크랙진전 거동)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.85-90
    • /
    • 2000
  • The fracture toughness and crack propagation behaviors of short nylon66 fiber reinforced Chloroprene rubber nave been Investigated as functions of fiber aspect ratio, fiber content and interphase conditions. The J for crack initiation and rupture were determined for short-fiber reinforced rubber. The values of $J_c$ for most reinforced rubbers were low compared that of matrix. But, $J_r$ at rupture showed a higher value than that of matrix. The crack propagation behaviors were analyzed into 3 patterns with increasing fiber aspect ratio and fiber content. The tearing mechanisms of matrix and fiber reinforced rubber were observed by CCD camera focused on the tip of crack and load-displacement graph. Both cases showed a completely different behaviors

  • PDF