• Title/Summary/Keyword: Reinforced Polymer Composites

Search Result 386, Processing Time 0.02 seconds

Development and characterization of graphite reinforced conductive polymer composites for PEMFC bipolar plates (고분자전해질 연료전지용 흑연계 복합소재 분리판 개발)

  • Heo Seongil;Yun Jincheol;Oh Kyeongseok;Han Kyungseop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.248-251
    • /
    • 2005
  • Graphite reinforced conductive polymer composites for PEMFC bipolar plates were fabricated by the compression molding technique. Graphite powder was mixed with an phenol resin to impart electrical property in composites. In this study, conductive polymer composites with high filler $loadings(>60wt.\%)$ were manufactured to accomplish high electrical conductivity above 100S/cm. The level of compaction is important because graphite powder increase electrical conductivity of composites by direct physical contact between particles. The optimum molding pressure according to filler was proposed experimentally. Various tests(electrical conductivity, flexural strength, compressive strength, leach test, etc) were carried out to verify the performance of fabricated composites for PEMFC bipolar plates. Fabricated composites have good electrical conductivity and mechanical strength. The results of leach test and contact angle measurement showed similar characteristics compared with commercial bipolar plates.

  • PDF

Mechanical Properties of Carbon-Fiber Reinforced Polymer-Impregnated Cement Composites

  • Park, Seung-Bum;Yoon, Eui-Sik
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.65-77
    • /
    • 1999
  • A portland cement was reinforced by incorporating carbon fiber(CF), silica powder, and impregnating the pores with styrene monomers which were polymerized in situ. The effects of type, length, and volume loading of CF, mixing conditions, curing time and, curing conditions on mechanical behavior as well as freeze-thaw resistance and longer term stability of the carbon-fiber reinforced cement composites (CFRC) were investigated. The composite Paste exhibited a decrease in flow values linearly as the CF volume loadings increased. Tensile, compressive, and flexural strengths all generally increased as the CF loadings in the composite increased. Compressive strength decreased at CF loadings above approx. 3% in CFRC having no impregnated polymers due to the increase in porosity caused by the fibers. However, the polymer impregnation of CFRC improved all the strength values as compared with CFRC having no Polymer impregnation. Tensile stress-strain curves showed that polymer impregnation decreased the fracture energy of CFRC. Polymer impregnation clearly showed improvements in freeze-thaw resistance and drying shrinkage when compared with CFRC having no impregnated polymers.

  • PDF

Thermotropic Liquid Crystal Polymer Reinforced Poly(butylene terephthalate) Composites to Improve Heat Distortion Temperature and Mechanical Properties

  • Kim, Jun-Young;Kang, Seong-Wook;Kim, Seong-Hun
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.358-366
    • /
    • 2006
  • Thermotropic liquid crystal polymer (TLCP)-reinforced poly(butylene terephthalate) (PBT) composites were prepared by melt processing. The improvement in the mechanical properties and the processability of the PBT/TLCP composites was attributed to the reinforcing effect by TLCP phase and its well distribution in the PBT matrix. X-ray diffraction results demonstrated that a slow cooling process leads to the thicker lamellar structures and the formation of more regular crystallites in the composites. The incorporation of TLCP improves not only the tensile strength and flexural modulus but also the heat distortion temperature (HDT) of the PBT/TLCP composites. The HDT values of the composites were dependent on TLCP content. The improvement in the HDT values of the PBT/TLCP composites may be explained in terms with the increased flexural modulus, the development of more regular crystalline structures, and the enhancement of the ability of the composites to sustain the storage modulus by TLCP phase. In addition, the simple additivity rule makes it possible to predict the HDT values of the PBT/TLCP composites.

Bending Strength of Natural Woven Bamboo Fiber-reinforced Polymer Composites with Manufacturing Factors (직조된 대나무 자연섬유 복합재료의 제조인자에 따른 굽힘강도)

  • Song Jun-Hee;Lim Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.916-922
    • /
    • 2006
  • In recent years there has been a growing interest for the use of natural fibers in composite applications due to their low cost, environmental friendliness, and good mechanical properties. The purpose of this study is to determine the characteristic of bending strength on bamboo fiber reinforced polymer composites. The parameters of RTM process depend on the weight ratio of bamboo fiber and resin, the number of bamboo ply and amount of hardening agent. Mechanical properties was investigated for each process factor of polymer composites. Test result shows that bending strength was a maximum(approximately 85MPa) value when composite thickness was 6mm and weight ratio of resin was 13%.

Property improvement of natural fiber-reinforced green composites by water treatment

  • Cho, Dong-Hwan;Seo, Jeong-Min;Lee, Hyun-Seok;Cho, Chae-Wook;Han, Seong-Ok;Park, Won-Ho
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.299-314
    • /
    • 2007
  • In the present study, natural fibers (jute, kenaf and henequen) reinforced thermoplastic (poly(lactic acid) and polypropylene) and thermosetting (unsaturated polyester) matrix composites were well fabricated by a compression molding technique using all chopped natural fibers of about 10 mm long, respectively. Prior to green composite fabrication, natural fiber bundles were surface-treated with tap water by static soaking and dynamic ultrasonication methods, respectively. The interfacial shear strength, flexural properties, and dynamic mechanical properties of each green composite system were investigated by means of single fiber microbonding test, 3-point flexural test, and dynamic mechanical analysis, respectively. The result indicated that the properties of the polymeric resins were significantly improved by incorporating the natural fibers into the resin matrix and also the properties of untreated green composites were further improved by the water treatment done to the natural fibers used. Also, the property improvement of natural fiber-reinforced green composites strongly depended on the treatment method. The interfacial and mechanical results agreed with each other.

Multiscale approach to predict the effective elastic behavior of nanoparticle-reinforced polymer composites

  • Kim, B.R.;Pyo, S.H.;Lemaire, G.;Lee, H.K.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.173-185
    • /
    • 2011
  • A multiscale modeling scheme that addresses the influence of the nanoparticle size in nanocomposites consisting of nano-sized spherical particles embedded in a polymer matrix is presented. A micromechanics-based constitutive model for nanoparticle-reinforced polymer composites is derived by incorporating the Eshelby tensor considering the interface effects (Duan et al. 2005a) into the ensemble-volume average method (Ju and Chen 1994). A numerical investigation is carried out to validate the proposed micromechanics-based constitutive model, and a parametric study on the interface moduli is conducted to investigate the effect of interface moduli on the overall behavior of the composites. In addition, molecular dynamics (MD) simulations are performed to determine the mechanical properties of the nanoparticles and polymer. Finally, the overall elastic moduli of the nanoparticle-reinforced polymer composites are estimated using the proposed multiscale approach combining the ensemble-volume average method and the MD simulation. The predictive capability of the proposed multiscale approach has been demonstrated through the multiscale numerical simulations.

Effect of particle size on graphite reinforced conductive polymer composites (입자의 크기에 따른 흑연 보강 전도성 고분자 복합재료의 특성 연구)

  • Heo, S.I.;Yun, J.C.;Oh, K.S.;Han, K.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.257-260
    • /
    • 2005
  • Graphite reinforced conductive polymer composites were fabricated by the compression molding technique. Graphite powder was mixed with an phenol resin to impart electrical property in composites. The ratio and particle size of graphite powder were varied to investigate electrical conductivity of cured composites. In this study, graphite reinforced conductive polymer composites with high filler loadings(>66wt.%) were manufactured to accomplish high electrical conductivity. With increasing the loading ratio of graphite powder, the electrical conductivity and flexural strength increased. However. above 80wt.% filler loadings, flexural strength decreased due to lack of resin. Regardless of graphite particle size, electrical conductivity wasn’t varied. On the other hand, with decreasing particle size, flexural strength increased due to high specific surface area.

  • PDF

Fabrication and Characterization of graphite reinforced conductive polymer composites (탄소 보강 전도성 고분자 복합재료의 제조 및 특성 평가)

  • Heo S. I.;Yun J. C.;Jung C. K.;Han K. S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.147-150
    • /
    • 2004
  • Graphite reinforced conductive polymer composites were fabricated by the compression molding technique. Graphite powder (conductive filler) was mixed with an epoxy resin to impart electrical property in composites. The ratio of graphite powder was varied to investigate electrical property of cured conductive composites. In this study, graphite filled conductive polymer composites with high filler loadings$(>60wt.\%)$ were manufactured to accomplish high electrical conductivity(> 100S/cm). Graphite powder increase electrical conductivity of composites by direct physical contact between particles. While high filler loadings are needed to attain good electrical property, the composites becomes brittle. So the ratio of filler to epoxy was varied to optimize of cured composites. The optimum molding pressure according to filler was proposed experimentally.

  • PDF

Fire Resistance of Inorganic Polymer Composites for Repair and Rehabilitation (보수.보강에 사용하는 무기계 폴리머 복합재료의 내열성능)

  • Balaguru, P.N.;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.647-652
    • /
    • 1997
  • Repair and rehabilitation of existing structures is becoming a major part of construction, both in the industrially developed and developing countries. Advanced high strength composites are being utilized more and more for these applications because they are much stronger than steel, non-corrosive, and light. The light weight reduces the construction cost and time sustantially. The fibers are normally made of aramid, carbon, or glass and the binders are typically epoxies or esters. One major disadvantage of these composites is the vulnerability to fire. In most instance, the temperature cannot exceed $300^{\cire}C$. Since carbon and glass can substain high temperatures, an inorganic polymer is being evaluated for use as a matrix. The matrix can sustain more than $1000^{\cire}C$. The results reported in this paper deal with the mechanical properties of carbon composites made with the inorganic polymer and the behavior strengthened reinforced concrete beams. The results indicate that the new matrix can be successfully utilized for a number of applications.

  • PDF

An Experimental study on the Mechanical Properies of Fiber Reinforced Cement Composites Utilizing y-Products(II) (산업부산물을 활용한 섬유보강 시멘트 복합체의 가학적 특성에 관한 실험적 연구(I ))

  • 박승범;윤의식;조청위
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.93-98
    • /
    • 1993
  • In order to discuss the mechanical properties of fiber reinforced composites with fly ash, lime, gypsum and polymer emulsion-Stylene Butadiene Rubber Latex (SBR) , experimental studies on FRC were carried out. The kinds of fiber used in FRC are PAN-dervied and Pitch-derived carbon fiver, alkali-resistance glass fiber. As a test results, the flexural strength and tougthness of fiber reinforced fly ash. lime.gypsum cement composites are remarkably increased by fiber contents ,but compressive strength of the composites are influenced by kinds of fiber more than by fiber contents. Also, addition of a polymer emulsion (SBR) to the composites decreased the bulk specific gravity, but compressive and flexural strengths, toughness of the composites are not influenced by it, are considerably improved by increasing fiber contents.

  • PDF