• Title/Summary/Keyword: Reinforced Fitting

검색결과 31건 처리시간 0.027초

지역난방 열배관 강화를 위한 실증시험 연구 (Experimental Study for the Reinforcement of District Heating Pipe)

  • 김재민;김주용;조종두
    • 대한기계학회논문집A
    • /
    • 제40권3호
    • /
    • pp.245-252
    • /
    • 2016
  • 본 논문은 벤드(bend)부의 노후 문제를 경감시키기 위한 대안으로 폼패드를 없앤 이중보온관의 형상 설계를 제안하였다. 전 관경에 대해 유한요소해석을 수행하였으며, 이를 토대로 전단제어링 형상을 결정하였다. 제안된 전단제어링 사양 강화이형관에 대한 현장 시공 시험은 진행하였으며, 온도와 응력 데이터를 취득 및 분석하였다. 강화이형관의 제작과 현장 시범시공을 통하여 강화이형관이 폼패드를 시공하지 않으면서도 강관의 열응력이 허용치 기준내에 있음을 확인하였다. 특히 보온재의 전단강도가 강화되어 폼패드를 적용한 기존 벤드보다 낮은 최대 전단응력이 발생함을 확인함으로써, 강화이형관 적용에 따른 구조 안전성 향상 효과를 확인하였다.

초장축 스테인레스/복합재료 파이프의 피팅 공정 개발 (Development of Fitting Process for Extra Long Stainless/Composite Material Pipes)

  • 박수현;이춘만
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.77-82
    • /
    • 2008
  • Rubbing-roller is used for manufacturing liquid crystal display, and static displacement of the rubbing-roller becomes bigger as length of the rubbing roller made of aluminum is getting longer. Therefore, material of the rubbing-roller is changed from aluminum to CFRP(Carbon Fiber Reinforced plastic). Recently thermal spraying is applied to manufacturing process of long rubbing-roller. The thermal spraying has disadvantages such as increment of manufacturing time and fraction defective caused by density of stainless steel particle. In this study, fitting process by drawing was suggested and FEM analysis with Tsai-Wu failure theory and fitting experiments are carried out to find adequate shrink allowance. The suggested shrink allowance gives proper adhesive force, and CFRP failure is not occurred. Furthermore, the fitting process is applied to long rubbing-roller and availability of the fitting process is studied by measurement of roundness, straightness and shear strength.

Thermoforming Technology of Textile Composite Tubes

  • OZAKI Jun-ichi;MANABE Ken-ichi
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The Korea-Japan Plastics Processing Joint Seminar
    • /
    • pp.63-66
    • /
    • 2003
  • Thermoforming of fiber reinforced thermoplastic (FRTP) braided tubes was studied as a new forming technique. FRTP braided tubes with four plies are fabricated by the pressure bonding method are used in thermoforming. Bulge forming, bending process, pipe fittings and FE analysis are carried out in this study. In bulge forming the composite tube can be expanded up to about two times initial diameter. The suggested bending process can be obtained bent products with various bending radii. In pipe fitting it is possible to fabricate T-shape fitting, cross fitting and two-branch fitting. These results exhibit developed forming processes become useful processes for textile composite tubes.

  • PDF

154kV급 Hollow Composite Insulator의 기계적 강도해석 및 특성시험 (The Performance Test and Mechanical Strength Analysis for 154kV Hollow Composite Insulator)

  • 박기호;조한구;한동희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.495-498
    • /
    • 2002
  • This paper describes the results the problem of stress calculation and optimization into a FRP(Fiber-glass Reinforced Plastic) tube crimped into a metal end-fitting. This type of assembly is used mainly is used mainly for suspension and line post insulators. Fitting strength of FRP and flange of this study is required greatly from composite insulator to important special quality. Therefore, wish to seek analysis and mechanical strength performance that follow to FRP tube and flange of top and bottom mechanical fitting.

  • PDF

휨보강된 철근콘크리트보의 확률론적 고찰 (Probabilistic Considerations on Strengthened Reinforced Concrete Beam for Flexural Loads)

  • 이차돈;최봉섭;김수정
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.733-738
    • /
    • 2001
  • Although there are strong needs for evaluating statistical characteristics of strengthened reinforced concrete beams under flexure, many researches have been performed mostly on the mechanical properties and failure mechanisms. Different material properties and resulting reinforcing effect could alter the probabilistic values of the strengthened beams. Existing equations suggested for predicting flexural strengthened reinforced concrete beam with CFRP and steel plate are selected and best-fitting one is used in evaluating probability of failure based on Monte-Carlo method. Influential factors are statistically examined and approximate strength reduction factors are suggested. It was found that the factor is more sensitively influenced by predictive equations as well as characteristics and amounts of strengthening materials.

  • PDF

Static strength of collar-plate reinforced tubular T-joints under axial loading

  • Shao, Yong-Bo
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.323-342
    • /
    • 2016
  • To study the effect of collar-plate reinforcement on the static strength of tubular T-joints under axial loading, fundamental research work is carried out from both experimental test and finite element (FE) simulation. Through experimental tests on 7 collar-plate reinforced and 7 corresponding un-reinforced tubular T-joints under axial loading, the reinforcing efficiency is investigated. Thereafter, the static strengths of the above 14 models are analyzed by using FE method, and it is found that the numerical results agree reasonably well with the experimental data to prove the accuracy of the presented FE model. Additionally, a parametric study is conducted to analyze the effect of some geometrical parameters, i.e., the brace-to-chord diameter ratio ${\beta}$, the chord diameter-to-chord wall thickness ratio $2{\gamma}$, collar-plate thickness to chord wall thickness ratio ${\tau}_c$, and collar-plate length to brace diameter ratio $l_c/d_1$, on the static strength of a tubular T-joint. The parametric study shows that the static strength can be greatly improved by increasing the collar-plate thickness to chord wall thickness ratio ${\tau}_c$ and the collar-plate length to brace diameter ratio $l_c/d_1$. Based on the numerical results, parametric equations are obtained from curving fitting technique to estimate the static strength of a tubular T-joint with collar-plate reinforcement under axial loading, and the accuracy of these equations is also evaluated from error analysis.

Mechanical behavior of stud shear connectors embedded in HFRC

  • He, Yu-Liang;Wu, Xu-Dong;Xiang, Yi-Qiang;Wang, Yu-Hang;Liu, Li-Si;He, Zhi-Hai
    • Steel and Composite Structures
    • /
    • 제24권2호
    • /
    • pp.177-189
    • /
    • 2017
  • Hybrid-fiber reinforced concrete (HFRC) may provide much higher tensile and flexural strengths, tensile ductility, and flexural toughness than normal concrete (NC). HFRC slab has outstanding advantages for use as a composite bridge potential deck slab owing to higher tensile strength, ductility and crack resistance. However, there is little information on shear connector associated with HFRC slabs. To investigate the mechanical behavior of the stud shear connectors embedded in HFRC slab, 14 push-out tests (five batches) in HFRC and NC were conducted. It was found that the stud shear connector embedded in HFRC had a better ductility, higher stiffness and a slightly larger shear bearing capacity than those in NC. The experimentally obtained ultimate resistances of the stud shear connectors were also compared against the equations provided by GB50017 2003, ACI 318-112011, AISC 2011, AASHTO LRFD 2010, PCI 2004, and EN 1994-1-1 (2004), and an empirical equation to predict the ultimate shear connector resistance considering the effect of the HFRC slabs was proposed and validated by the experimental data. Curve fitting was performed to find fitting parameters for all tested specimens and idealized load-slip models were obtained for the specimens with HFRC slabs.

매입형 FRP봉과 보강철물을 보강한 철근콘크리트 보의 구조성능 평가 (Evaluation of Structural Performance of Reinforced Concrete Beams Retrofitted by Embedded FRP Rod and Metal Fittings)

  • 하기주;신종학;하영주;강현욱
    • 콘크리트학회논문집
    • /
    • 제24권4호
    • /
    • pp.445-452
    • /
    • 2012
  • 이 연구에서는 기존 철근콘크리트 건축물의 구조성능 향상을 위하여 매입형 FRP봉과 보강철물을 보강한 철근콘크리트 보의 구조성능을 평가하기 위하여 실험을 수행하였다. 매입형 FRP봉의 사용량, 보강철물 유무에 따라 총 7개의 실험체를 제작하고 실험을 수행하여 구조성능을 평가하였으며, 이 연구의 실험 결과를 근거로 다음과 같은 결론을 얻었다. 매입형 FRP봉 보강실험체(BCR 시리즈)의 경우 표준실험체(BSS)와 비교하여 21~55% 내력이 증가하였고, 매입형 FRP봉과 보강철물을 보강한 실험체(BCR-AC 시리즈)는 표준실험체(BSS)보다 최대내력이 21~63% 증가하였다. 그리고 매입형 FRP봉으로 보강된 실험체는 부착슬립, 피복분리 형태로 파괴되었으나, 매입형 FRP봉과 보강철물을 보강한 실험체는 보강철물의 구속효과로 부착슬립의 형태로 파괴되었다.

Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests

  • Zarnani, Saman;El-Emam, Magdi M.;Bathurst, Richard J.
    • Geomechanics and Engineering
    • /
    • 제3권4호
    • /
    • pp.291-321
    • /
    • 2011
  • The paper describes a simple numerical FLAC model that was developed to simulate the dynamic response of two instrumented reduced-scale model reinforced soil walls constructed on a 1-g shaking table. The models were 1 m high by 1.4 m wide by 2.4 m long and were constructed with a uniform size sand backfill, a polymeric geogrid reinforcement material with appropriately scaled stiffness, and a structural full-height rigid panel facing. The wall toe was constructed to simulate a perfectly hinged toe (i.e. toe allowed to rotate only) in one model and an idealized sliding toe (i.e. toe allowed to rotate and slide horizontally) in the other. Physical and numerical models were subjected to the same stepped amplitude sinusoidal base acceleration record. The material properties of the component materials (e.g. backfill and reinforcement) were determined from independent laboratory testing (reinforcement) and by back-fitting results of a numerical FLAC model for direct shear box testing to the corresponding physical test results. A simple elastic-plastic model with Mohr-Coulomb failure criterion for the sand was judged to give satisfactory agreement with measured wall results. The numerical results are also compared to closed-form solutions for reinforcement loads. In most cases predicted and closed-form solutions fall within the accuracy of measured loads based on ${\pm}1$ standard deviation applied to physical measurements. The paper summarizes important lessons learned and implications to the seismic design and performance of geosynthetic reinforced soil walls.

유한요소 시뮬레이션을 통한 지역난방열배관 특성 평가 및 강화이형관의 제안 (Design Validation and Improvement of District Heating Pipe Using FE Simulation)

  • 김주용;김호범;고현일;안영모;조종두
    • 대한기계학회논문집A
    • /
    • 제33권4호
    • /
    • pp.337-345
    • /
    • 2009
  • This paper investigates the reliability of district heating pipes at thermo-elastic fatigue loading. District heating pipes, subjected to $120^{\circ}C$ and $16kg_f/cm^2$ due to water distributing service through inside the pipes, should endure long term cyclic thermal-mechanical loadings. The heating pipes are the co-centric tubes of steel pipe, poly urethane(PUR) insulator, and high density poly ethylene(HDPE) case. On installation, foam pad is externally wrapped for accommodating stress reduction near the bend sections of pipes. However, there have been frequent reports on the failures of bend sections in the middle of long term service. This study scrutinizes the observed failures near the bend sections through applying the finite element methods. Specially in this study, heating pipes are studied on the influence of foam padding on failures and proposed new designs for reinforced bend without foam pad.