• Title/Summary/Keyword: Reinforced Concrete Frame

Search Result 650, Processing Time 0.032 seconds

Seismic Performance Evaluation of Reinforced Concrete Buildings Strengthened by Embedded Steel Frame (내부 매입형 철골조로 보강된 철근콘크리트 건물의 내진 성능평가)

  • Kim, Seonwoong;Lee, Kyungkoo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2020
  • This study is to investigate the effect of a retrofitted reinforced concrete frame with non-seismic details strengthened by embedded steel moment frames with an indirect joint, which mitigates the problems of the direct joint method. First, full-scale experiments were conducted to confirm the structural behavior of a 2-story reinforced concrete frame with non-seismic details and strengthened by a steel moment frame with an indirect joint. The reinforced concrete frame with non-seismic details showed a maximum strength of 185 kN at an overall drift ratio of 1.75%. The flexural-shear failure of columns was governed, and shear cracks were concentrated at the beam-column joints. The reinforced concrete frame strengthened by the embedded steel moment frames achieved a maximum strength of 701 kN at an overall drift ratio of 1.5% so that the maximum strength was about 3.8 times that of the specimen with non-seismic details. The failure pattern of the retrofitted specimen was the loss of bond strength between the concrete and the rebars of the columns caused by a prying action of the bottom indirect joint because of lateral force. Furthermore, methods are proposed for calculation of the specified strength of the reinforced concrete frame with non-seismic details and strengthened by the steel moment frame with the indirect joint.

Analysis of stress dispersion in bamboo reinforced wall panels under earthquake loading using finite element analysis

  • Kumar, Gulshan;Ashish, Deepankar K.
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.451-461
    • /
    • 2018
  • Present study is mainly concerned about the idea of innovative utilization of bamboo in modern construction. Owing to its compatible mechanical properties, a beneficial effect of its use in reinforced concrete (RC) frame infills has been observed. In this investigation, finite element analyses have been performed to examine the failure pattern and stress distribution pattern through the infills of a moment resisting RC frame. To validate the pragmatic use of bamboo reinforced components as infills, earthquake loading corresponding to Nepal earthquake had been considered. The analysis have revealed that introduction of bamboo in RC frames imparts more flexibility to the structure and hence may causes a ductile failure during high magnitude earthquakes like in Nepal. A more uniform stress distribution throughout the bamboo reinforced wall panels validates the practical feasibility of using bamboo reinforced concrete wall panels as a replacement of conventional brick masonry wall panels. A more detailed analysis of the results have shown the fact that stress concentration was more on the frame components in case of frame with brick masonry, contrary to the frame with bamboo reinforced concrete wall panels, in which, major stress dispersion was through wall panels leaving frame components subjected to smaller stresses. Thus an effective contribution of bamboo in dissipation of stresses generated during devastating seismic activity have been shown by these results which can be used to concrete the feasibility of using bamboo in modern construction.

Investigation of nonlinear behaviour of reinforced concrete frames having different stiffening members

  • Gursoy, Senol
    • Computers and Concrete
    • /
    • v.13 no.5
    • /
    • pp.679-694
    • /
    • 2014
  • The selected carrier systems of reinforced concrete frame buildings are quite important on structural damages. In this study are examined comparatively nonlinear behaviours of reinforced concrete frames which having different stiffening members under a horizontal load. In that respect, the study consists of six parametric models. With this purpose, nonlinear structural analyses of reinforced concrete frames which having different stiffening members were carried out with LUSAS which uses the finite element method. Thus, some conclusions and recommendations to mitigate the damage of reinforced concrete buildings in the future designs are aimed to present. The obtained results revealed that in terms of performance, the x-shaped diagonal elements can be used as an option to shear walls. In addition, it was found that frame-2, frame-3 and frame-4 showed a better performance than traditional frame system (frame-1).

RCC frames with ferrocement and fiber reinforced concrete infill panels under reverse cyclic loading

  • Ganesan, N.;Indira, P.V.;Irshad, P.
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.257-270
    • /
    • 2017
  • An experimental investigation was carried out to study the strength and behavior of reinforced cement concrete (RCC) frames with ferrocement and fiber reinforced concrete infill panel. Seven numbers of $1/4^{th}$ scaled down model of one bay-three storey frames were tested under reverse cyclic loading. Ferrocement infilled frames and fiber reinforced concrete infilled frames with varying volume fraction of reinforcement in infill panels viz; 0.20%, 0.30%, and 0.40% were tested and compared with the bare frame. The experimental results indicate that the strength, stiffness and energy dissipation capacity of infilled frames were considerably improved when compared with the bare frame. In the case of infilled frames with equal volume fraction of reinforcement in infill panels, the strength and stiffness of frames with fiber reinforced concrete infill panels were slightly higher than those with ferrocement infill panels. Increase in volume fraction of reinforcement in the infill panels exhibited only marginal improvement in the strength and behavior of the infilled frames.

Earthquake response of reinforced concrete frame structures subjected to rebar corrosion

  • Yuksel, Isa;Coskan, Seda
    • Earthquakes and Structures
    • /
    • v.5 no.3
    • /
    • pp.321-341
    • /
    • 2013
  • This paper investigates earthquake response of reinforced concrete regular frames subjected to rebar corrosion. A typical four-story reinforced concrete frame is designed according to Turkish Earthquake Code in order to examine earthquake response. Then different levels of rebar corrosion scenarios are applied to this frame structure. The deteriorated conditions as a result of these scenarios are included loss in cross sectional area of rebar, loss of mechanical properties of rebar, loss in bond strength and variations in damage limits of concrete sections. The frame is evaluated using a nonlinear static analysis in its sound as well as deteriorated conditions. The rebar corrosion effect on the structural response is investigated by comparing the response of the frame in each scenario with respect to the sound condition of the frame. The results shows that the progressive deterioration of the frame over time cause serious reductions on the base shear and top displacement capacity and also structural ductility of the corroded frames. The propagation time, intensity, and extensity of rebar corrosion on the frame are important parameters governing the effect of rebar corrosion on earthquake response of the frame.

Forced Vibration Testing of Full-scale Non-seismic Reinforced Concrete Frame Structure Retrofitted Using FRP Jacketing System (FRP자켓 시스템이 보강된 비내진 철근콘크리트 골조의 실물 크기 강제 진동 실험)

  • Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.281-289
    • /
    • 2018
  • Existing reinforced concrete building structures have seismic vulnerabilities due to their seismically-deficient details resulting in non-ductile behavior. The seismic vulnerabilities can be mitigated by retrofitting the buildings using a fiber-reinforced polymer column jacketing system, which can provide additional confining pressures to existing columns to improve their lateral resisting capacities. This study presents dynamic responses of a full-scale non-ductile reinforced concrete frame retrofitted using a fiber-reinforced polymer column jacketing system. A series of forced-vibration testing was performed to measure the dynamic responses (e.g. natural frequencies, story drifts and column/beam rotations). Additionally, the dynamic responses of the retrofitted frame were compared to those of the non-retrofitted frame to investigate effectiveness of the retrofit system. The experimental results demonstrate that the retrofit system installed on the first story columns contributed to reducing story drifts and column rotations. Additionally, the retrofit scheme helped mitigate damage concentration on the first story columns as compared to the non-retrofitted frame.

A Nonlinear Finite Element Analysis to Reinforced Concrete Frame Retrofitted with Cast-In Plate Infilled Shear Wall (현장끼움벽으로 보강된 철근콘크리트 골조의 비선형 유한요소해석)

  • Han Min Ki;Lee Hye Yeon;Kim Hyo Jin;Lee Kab Weon;Choi Chang Sik;Yun Hyun Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.73-76
    • /
    • 2005
  • This paper discussed finite element method(FEM) models of the reinforced concrete frame retrofitted with cast-in plate infilled shear wall and analysed under constant axial and monotonic lateral load using ABAQUS. Detailed finite element models are created by studying the monotonic load response of the designed connection of reinforced concrete frame and cast-in plate infilled shear wall. The developed models account for the effect of material inelasticity, concrete cracking, geometric nonlinearity and bond-slip of steel, frame and infilled shear wall. In order to verify the proposed FEM, this study behaved analysis considered a diagonal reinforced steel. The analytical results compared with the experimental results.

  • PDF

Rebar corrosion effects on structural behavior of buildings

  • Yuksel, Isa
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1111-1133
    • /
    • 2015
  • Rebar corrosion in concrete is one of the main causes of reduction of service life of reinforced concrete buildings. This paper presents the influence of rebar corrosion on the structural behavior of reinforced concrete (RC) buildings subjected to strong earthquake ground motion. Different levels of rebar corrosion scenarios were applied on a typical four story RC frame. The deteriorated conditions as a result of these scenarios include loss in cross-sectional area and loss of mechanical properties of the reinforcement bars, loss in bond strength, and loss in concrete strength and its modulus of elasticity. Dynamic analyses of the frame with different corrosion scenarios are performed with selected strong earthquake ground motion records. The influences of degradation in both concrete and reinforcement on structural behavior are investigated by comparing the various parameters of the frame under different corrosion scenarios with respect to each other. The results show that the progressive deterioration of the frame due to rebar corrosion causes serious structural behavior changes such as change in failure mode. The intensity, propagation time, and extensity of rebar corrosion have very important effects on the level of degradation of steel and concrete, as well as on the earthquake behavior of the structure.

Experimental study on mechanical performances of lattice steel reinforced concrete inner frame with irregular section columns

  • Xue, Jianyang;Gao, Liang;Liu, Zuqiang;Zhao, Hongtie;Chen, Zongping
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.253-267
    • /
    • 2014
  • Based on the test on a 1/2.5-scaled model of a two-bay and three-story inner frame composed of reinforced concrete beams and lattice steel reinforced concrete (SRC) irregular section columns under low cyclic reversed loading, the failure process and the features of the frame were observed. The subsequence of plastic hinges of the structure, the load-displacement hysteresis loops and the skeleton curve, load bearing capacity, inter-story drift ratio, ductility, energy dissipation and stiffness degradation were analyzed. The results show that the lattice SRC inner frame is a typical strong column-weak beam structure. The hysteresis loops are spindle-shaped, and the stiffness degradation is insignificant. The elastic-plastic inter-story deformation capacity is high. Compared with the reinforced concrete frame with irregular section columns, the ductility and energy dissipation of the structure are better. The conclusions can be referred to for seismic design of this new kind of structure.

Effect of soil-structure interaction on seismic damage of mid-rise reinforced concrete structures retrofitted by FRP composites

  • Van Cao, Vui
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.307-317
    • /
    • 2018
  • The current study explores the soil-structure interaction (SSI) effect on the potential seismic damage of mid-rise non-seismically designed reinforced concrete frames retrofitted by Fibre Reinforced Polymer (FRP). An 8-storey reinforced concrete frame poorly-confined due to transverse reinforcement deficiency is selected and then retrofitted by FRP wraps to provide external confinement. The poorly-confined and FRP retrofitted frames with/without SSI are modelled using hysteretic nonlinear elements. Inelastic time history and damage analyses are performed for these frames subjected to different seismic intensities. The results show that the FRP confinement significantly reduces one or two damage levels for the poorly-confined frame. More importantly, the SSI effect is found to increase the potential seismic damage of the retrofitted frame, reducing the effectiveness of FRP retrofitting. This finding, which is contrary to the conventionally beneficial concept of SSI governing for decades in structural and earthquake engineering, is worth taking into account in designing and evaluating retrofitted structures.