• 제목/요약/키워드: Reinforced Concrete Beam

검색결과 1,659건 처리시간 0.032초

철근 이중 콘크리트 보의 피로 거동 (Fatigue Behavior of Reinforced Dual Concrete Beam)

  • 박대효;이상희
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.37-40
    • /
    • 2005
  • Reinforced dual concrete beam (RDC beam) is the reformed system that improves the overall structural properties of beam by partially applying high performance steel fiber reinforced concrete (HPSFRC) in the lower tension part of conventional reinforced concrete beam (RC beam). Fatigue test was done to prove the structural superiority of RDC beam. As a result of fatigue test, the deflection of RDC beam was decreased obviously and the slope of number of cycle-deflection relation curve of RDC beam was increased gently in comparison with RC beam.

  • PDF

재하상태에 따른 철근콘크리트 보의 보강효과 (Strengthening Effect of Reinforced Concrete Beam at Different Loading Stages)

  • 이차돈;이학주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.733-739
    • /
    • 1999
  • A theoretical model for flexural behavior of strengthened reinforced concrete beam is developed based on displacement controlled nonlinear finite element method in this study. The developed model is shown to reasonably reproducing the experimental results of variously strengthened reinforced concrete beam. Parametric studies for the strengthened reinforced concrete beam at different loading stages are then performed using this model in order to assess the effect of loading stages at the time of strengthening on characteristic values of strengthened beam under flexure. It was found that depending on loading stages of a beam, deflections at yielding and at ultimate loads are more influenced than corresponding load capacities.

Structural Behavior of Beam-Column Joints Consisting of Composite Structures

  • Lee, Seung-Jo;Park, Jung-Min;Kim, Wha-Jung
    • KCI Concrete Journal
    • /
    • 제14권3호
    • /
    • pp.111-120
    • /
    • 2002
  • This study proposes a joint model consisting of different types of members as a new structural system, and then investigates the resulting structural behavior. The joint model consists of a concrete-filled steel tube column (CFT) together with a steel reinforced concrete at the end plus reinforced concrete beam at the center. For comparison, two other joint models were designed, that are, a CPT with a reinforced concrete beam, and a CFT with a steel reinforced concrete at the end plus steel concrete beam at the center, then their joint capacity and rigidity, energy absorption capacity, etc., were all investigated. From the results, the CFT column with a steel reinforced concrete at the end plus steel concrete beam at the center was outstanding in terms of its capacity and rigidity. The results of this analysis demonstrate that an adequate connection type and reinforcement method with different materials of increasing the rigidity, thereby producing a capacity improvement along with protection from pre-fractures.

  • PDF

Design Aids for a Reinforced Concrete Beam with the Minimum Cost Concept

  • Park, Dalsoo;Ahn, Jeehyun;Lee, Chadon
    • Architectural research
    • /
    • 제1권1호
    • /
    • pp.55-61
    • /
    • 1999
  • In reinforced concrete design, structural member sizes and amount of reinforcing steel areas are usually selected based on the structural designers' experience. Most existing charts provided for the design of reinforced concrete structural members were developed mainly based on force equilibrium conditions and some serviceability criteria. Sections selected from these charts may not result in an economic solution in terms of material costs as well as construction costs. Practical design aids are developed and suggested in this study for the economical design of reinforced concrete beam under flexural loading. With the beam width fixed, the depth of a beam, positive steel areas and negative steel areas are found from Khun-Tucker necessary conditions with Lagrangian multipliers to minimize the sectional cost of a beam. The developed design aids might be useful in selecting optimum reinforced concrete beam sections. Theoretical derivations and use of the developed design aids are described in this paper.

  • PDF

FRP 보강효과에 관한 실험적 연구 (An Experimental Study on Reinforcement Effect of FRP)

  • 김생빈;김동신
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.163-168
    • /
    • 1990
  • This study shows both through experiment and based on theory the reinforcement effectiveness when using FRP(Fiber Reinforced Plastics) as a means of reinforcing the concrete of the deteriorated concrete. Non-deteriorated concrete and deteriorated concrete which is deteriorated by freezing and thawing are made three type specimens (non-reinforced) concrete beam, one layer FRP reinforced concrete beam, two layer FRP reinforced concrete beam) for this purpose. Bending strength and cracking load ratio is measured by bending test.

  • PDF

Fiber method analysis of rc beam retrofitted with turnbuckle external post-tensioning

  • Lejano, Bernardo A.
    • Computers and Concrete
    • /
    • 제17권1호
    • /
    • pp.67-86
    • /
    • 2016
  • Strengthening as well as correcting unsightly deflections of reinforced concrete (RC) beam may be accomplished by retrofitting. An innovative way to do this retrofitting that is proposed in this study utilizes turnbuckle to apply external post-tensioning. This Turnbuckle External Post-Tensioning (T-EPT) was experimentally proven to improve the serviceability and load carrying capacity of reinforced concrete beams. The T-EPT system comprises a braced steel frame and a turnbuckle mechanism to provide the prestressing force. To further develop the T-EPT, this research aims to develop a numerical scheme to analyze the structural performance of reinforced concrete beams with this kind of retrofitting. The fiber method analysis was used as the numerical scheme. The fiber method is a simplified finite element method that is used in this study to predict the elastic and inelastic behavior of a reinforced concrete beam. With this, parametric study was conducted so that the effective setup of doing the T-EPT retrofitting may be determined. Different T-EPT configurations were investigated and their effectiveness evaluated. Overall, the T-EPT was effective in improving the serviceability condition and load carrying capacity of reinforced concrete beam.

섬유보강 콘크리트와 보통콘크리트로 합성된 이중 콘크리트 보의 휨 강도 (Flexural Strength of Dual Concrete Beams Composed of Fiber Reinforced Concrete and Normal Concrete)

  • 박대효;부준성;조백순
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.579-584
    • /
    • 2001
  • The reinforced concrete(RC) beam is developed cracks because the compression strength of concrete is strong but the tensile strength is weak. The structural strength and stiffness is decreased by reduction of tension resistance capacity of concrete due to the developed cracks. Using the fiber reinforced concrete that is increased the flexural strength and tensile strength at tensile part can enhance the strength and stiffness of concrete structure and decrease the tensile flexural cracks and deflection. Therefore, The reinforced concrete used the fiber reinforced concrete at tensile part ensure the safety and serviceability of the concrete structures. In this study, analytical model of a dual concrete beam that is composed of the normal strength concrete at compression part and the high tensile strength concrete at tensile part is developed by using the equilibrium condition of forces and compatibility condition of strains and is parted into elastic analytical model and ultimate analytical model. Three group of test beam that is formed of one reinforced concrete beam and two dual concrete beams for each steel reinforcement ratio is tested to examine the flexural behavior of dual concrete beams. The comparative study of total nine test beams is shown that the ultimate load of a dual concrete beams relative to the reinforced concrete beams have an increase in approximately 30%. In addition, the initial flexural rigidity, as used here, refer to the slope of load-deflection curves in elastic state is increased and the deflection is decreased.

  • PDF

RC보의 피로성능에 관한 실험적연구 (Experimental Study to fatigue performance of reinforced concrete beam)

  • 김순철;김은겸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.848-853
    • /
    • 2004
  • This is a basic experimental study elaborated on reinforced concrete beam under load, especially crack behavior, bending stiffness, deflection and strain of concrete and reinforced bar for reinforced concrete and steel fiber reinforced concrete beam in relation to fatigue loading in service ability limit states. Test parameters are concrete strength, volume. and type of steel fiber and fatigue loading in service ability limit states to be changed. In order to obtain the actual conditions of various working loads for the aforesaid reinforced concrete beam, minimum load is applied 10$\%$ of maximum design load and maximum load was applied 60$\%$, 80$\%$ and 100$\%$ respectively. Under the same condition, the test was implemented up to 1 million cycle and the result was thoroughly analyzed and reviewed.

  • PDF

철근 이중 콘크리트 보의 휨 및 전단 거동 (Flexural and Shear Behavior of Reinforced Dual Concrete Beam)

  • 박대효;박재민;김희대
    • 콘크리트학회논문집
    • /
    • 제17권3호
    • /
    • pp.401-409
    • /
    • 2005
  • 본 연구에서는 인장부에 강섬유 보강 콘크리트를 사용하고 압축부 및 나머지 부분에 보통 강도 콘크리트를 사용한 철근 이중 콘크리트 보가 제안된다. 이것은 일반 철근콘크리트의 인장부 하단에 강섬유 보강 콘크리트를 부분적으로 대체함으로써 전체적인 구조적 성능을 개선시킨 혁신적인 구조 시스템이다. RC 보에 비해 RDC 보가 구조적으로 우수함을 입증하기 위해 휨 및 전단 실험이 실시되었다. 또한 강섬유가 보강된 철근콘크리트 보의 휭 거동을 정확히 이해하고 모델링하기 위한 해석적 방법이 제안되어 실험결과와 비교되었다. 전단 거동은 전 단면에 걸쳐 섬유로 보강된 철근콘크리트 보의 전단 강도 예측을 위해 제안된 기존의 경험식 결과와 RU 보의 전단 실험 결과가 비교 분석되었다. 본 연구로부터 RDC 보는 RC 보에 비해 보다 우수한 구조적 성능을 발휘하고, 휨 해석 방법은 실험결과와 잘 일치되는 것으로 나타났다. 또한 인장부 일부에만 부분적으로 섬유를 보강할 경우 극한 전단강도에는 큰 영향을 미치지 못했지만 균열을 제어하고 진전을 억제하며 구조물 파괴모드를 안정적으로 유도하는 것으로 나타났다.

Numerical investigations of reinforcement concrete beams with different types of FRP bars

  • Azza M. Al-Ashmawy;Osman Shallan;Tharwat A. Sakr;Hanaa E. Abd-EL-Mottaleb
    • Structural Engineering and Mechanics
    • /
    • 제88권6호
    • /
    • pp.599-608
    • /
    • 2023
  • The present study is focused on instigation of the nonlinear mechanical behavior of reinforced concrete beams considering different types of FRP bars through nonlinear finite element simulations. To explore the impact of the FRP reinforcement type and geometry on the nonlinear mechanical behavior of reinforced beam, intensive parametric studies are carried out and discussed. Twenty models were carried out based on the finite element software (ABAQUS). The concrete damage plasticity model was considered. Four types of fiber polymer bars, CFRP, GFRP, AFRP and BFRP as longitudinal reinforcement for concrete beam were used. The validation of numerical results was confirmed by experimental as well as numerical results, then the parametric study was conducted to evaluate the effect of change in different parameters, such as bar diameter size, type of FRP bars and shear span length. All results were analyzed and discussed through, load-deflection diagram. The results showed that the use of FRP bars in rebar concrete beam improves the beam stiffness and enhance the ultimate load capacity. The load capacity enhanced in the range of (20.44-244.47%) when using different types of FRP bars. The load-carrying capacity of beams reinforced with CFRP is the highest one, beams reinforced with AFRP is higher than that reinforced with BFRP but beams reinforced with GFRP recorded the lowest load of capacity compered with other beams reinforced with FRP Bars.