• Title/Summary/Keyword: Regulatory Sequences

Search Result 125, Processing Time 0.025 seconds

Virus-induced Silencing of the WRKY1 Transcription Factor that Interacts with the SL1 Structure of Potato virus X Leads to Higher Viral RNA Accumulation and Severe Necrotic Symptoms

  • Park, Sang-Ho;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.40-48
    • /
    • 2012
  • $Potato$ $virus$ $X$ (PVX) replication is precisely regulated by regulatory viral sequences and by viral and/or host proteins. In a previous study, we identified a 54-kDa cellular tobacco protein that bound to a region within the first 46 nucleotides (nt) of the 5' non-translated region (NTR) of the viral genome. Optimal binding was dependent upon the presence of an ACCA sequence at nt 10-13. To identify host factors that bind to 5' NTR elements including AC-rich sequences as well as stemloop 1 (SL1), we used northwestern blotting and matrixassisted laser desorption/ionization time-of-flight mass spectrometry for peptide mass fingerprinting. We screened several host factors that might affect PVX replication and selected a candidate protein, $Nicotiana$ $tabacum$ WRKY transcription factor 1 (NtWRKY1). We used a $Tobacco$ $rattle$ $virus$ (TRV)-based virus-induced gene silencing (VIGS) system to investigate the role of NtWRKY1 in PVX replication. Silencing of $WRKY1$ in $Nicotiana$ $benthamiana$ caused lethal apical necrosis and allowed an increase in PVX RNA accumulation. This result could reflect the balancing of PVX accumulation in a systemic $N.$ $benthamiana$ host to maintain PVX survival and still produce a suitable appearance of mosaic and mottle symptoms. Our results suggest that PVX may recruit the WRKY transcription factor, which binds to the 5' NTR of viral genomic RNA and acts as a key regulator of viral infection.

Upregulated expression of the cDNA fragment possibly related to the virulence of Acanthamoeba culbertsoni

  • Im, Kyung-Il;Park, Kwang-Min;Yong, Tai-Soon;Hong, Yong-Pyo;Kim, Tae-Eun
    • Parasites, Hosts and Diseases
    • /
    • v.37 no.4
    • /
    • pp.257-263
    • /
    • 1999
  • Identification of the genes responsible for the recovery of virulence in brain-passaged Acanthamoeba culbertsoni was attempted via mRNA differential display polymerase chain reaction (mRNA DD-PCR) analysis. In order to identify the regulatory changes in transcription of the virulence related genes by the brain passages, mRNA DD-PCR was performed which enabled the display of differentially transcribed mRNAs after the brain passages. Through mRNA DD-PCR analysis. 96 brain-passaged amoeba specific amplicons were observed and were screened to identify the amplicons that failed to amplify in the non-brain-passaged amoeba mRNAs. Out of the 96 brain-passaged amoeba specific amplicons, 12 turned out to be amplified only from the brain-passaged amoeba mRNAs by DNA slot blot hybridization. The clone, A289C, amplified with an arbitrary primer of UBC #289 and the oligo dT$_{11}$-C primer, revealed the highest homology (49.8%) to the amino acid sequences of UPD-galactose lipid transferase of Erwinia amylovora, which is known to act as an important virulence factor. The deduced amino acid sequences of an insert DNA in clone A289C were also revealed to be similar to cpsD, which is the essential gene for the expression of type III capsule in group B streptococcus. Upregulated expression of clone A289C was verified by RNA slot blot hybridization. Similar hydrophobicity values were also observed between A289C (at residues 47-66) and the AmsG gene of E. amylovora (at residues 286-305: transmembrane domains). This result suggested that the insert of clone A289C might play the same function as galactosyl transferase controlled by the AmsG gene in E. amylovora.a.

  • PDF

The Heavy Metal Tolerant Soil Bacterium Achromobacter sp. AO22 Contains a Unique Copper Homeostasis Locus and Two mer Operons

  • Ng, Shee Ping;Palombo, Enzo A.;Bhave, Mrinal
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.742-753
    • /
    • 2012
  • Copper-containing compounds are introduced into the environment through agricultural chemicals, mining, and metal industries and cause severe detrimental effects on ecosystems. Certain microorganisms exposed to these stressors exhibit molecular mechanisms to maintain intracellular copper homeostasis and avoid toxicity. We have previously reported that the soil bacterial isolate Achromobacter sp. AO22 is multi-heavy metal tolerant and exhibits a mer operon associated with a Tn21 type transposon. The present study reports that AO22 also hosts a unique cop locus encoding copper homeostasis determinants. The putative cop genes were amplified from the strain AO22 using degenerate primers based on reported cop and pco sequences, and a constructed 10,552 base pair contig (GenBank Accession No. GU929214). BLAST analyses of the sequence revealed a unique cop locus of 10 complete open reading frames, designated copSRABGOFCDK, with unusual separation of copCD from copAB. The promoter areas exhibit two putative cop boxes, and copRS appear to be transcribed divergently from other genes. The putative protein CopA may be a copper oxidase involved in export to the periplasm, CopB is likely extracytoplasmic, CopC may be periplasmic, CopD is cytoplasmic/inner membrane, CopF is a P-type ATPase, and CopG, CopO, and CopK are likely copper chaperones. CopA, B, C, and D exhibit several potential copper ligands and CopS and CopR exhibit features of two-component regulatory systems. Sequences flanking indicate the AO22 cop locus may be present within a genomic island. Achromobacter sp. strain AO22 is thus an ideal candidate for understanding copper homeostasis mechanisms and exploiting them for copper biosensor or biosorption systems.

Regulation of Gene Expression and 3-Dimensional Structure of DNA (유전자 발현 조절과 DNA 3차원적 구조와의 관계)

  • 김병동
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.149-155
    • /
    • 1987
  • Growth and development of a higher plant, or any living organism for that matter, could be defined as an orderly expression of the genome in time and space in close interaction with the environment. During differentiation and development of a tissue or organ a group of genes must be selectively turned on or turned off mainly by trans-acting regulators. In this general concept of regulation of regulation of gene expression, a DNA molecule is recognized at a specific nucleotide sequence by DNA-binding factors. Molecular biology of the regulatory factors such as hormones, and their receptors, target DNA sequences and DNA-binding proteins are well advanced. What is not clearly understood is the molecular basis of the interactions between DNA and binding factors, expecially of the usages of the dyad symmetry of the target DNA sequences and the dimeric nature of the DNA-binding proteins. A unique 3-dimensional structure of DNA has been proposed that may play an important role in the orderly expression of the gene. A foldback intercoil (FBI) DNA configuration which was originally found by electron microscopy among mtDNA molecules from pearl millet has some unique features. The FBI configuration of DNA is believed to be formed when a flexible double helix folds back and interwines in the widened major grooves resulting in a four stranded, intercoil DNA whose thickness is the same as that of double stranded DNA. More recently, the FBI structure of DNA has been also induced in vitro by a novel enzyme which was purified from pearl millet mitochondria. It has been proposed that the FBI DNA could be utillized in intramolecular recombination which leads to inversion or deletion, and in intermolecular recombination which can lead to either site-specific recombination, genetic recombination via single strand invasion, or cross strand recombination. The structure and function of DNA in 3-dimensional aspect is emphasized for better understanding orderly expression of genes during growth and development.

  • PDF

Prediction of ORFs in Metagenome by Using Cis-acting Transcriptional and Translational Factors (메타게놈 서열에 존재하는 보존적인 전사와 번역 인자를 이용한 ORF 예측)

  • Cheong, Dea-Eun;Kim, Geun-Joong
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.490-496
    • /
    • 2010
  • As sequencing technologies are steadily improving, massive sequence data have been accumulated in public databases. Thereby, programs based on various algorithms are developed to mine useful information, such as genes, operons and regulatory factors,from these sequences. However, despite its usefulness in a wide range of applications, comprehensive analyses of metagenome using these programs have some drawbacks, thereby yielding inaccurate or complex results. We here provide a possibility of signature sequences (cis-acting transcriptional and translational factors of metagenome) as a hallmark of ORFs finding from metagenome.

HeLa E-Box Binding Protein, HEB, Inhibits Promoter Activity of the Lysophosphatidic Acid Receptor Gene Lpar1 in Neocortical Neuroblast Cells

  • Kim, Nam-Ho;Sadra, Ali;Park, Hee-Young;Oh, Sung-Min;Chun, Jerold;Yoon, Jeong Kyo;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.123-134
    • /
    • 2019
  • Lysophosphatidic acid (LPA) is an endogenous lysophospholipid with signaling properties outside of the cell and it signals through specific G protein-coupled receptors, known as $LPA_{1-6}$. For one of its receptors, $LPA_1$ (gene name Lpar1), details on the cis-acting elements for transcriptional control have not been defined. Using 5'RACE analysis, we report the identification of an alternative transcription start site of mouse Lpar1 and characterize approximately 3,500 bp of non-coding flanking sequence 5' of mouse Lpar1 gene for promoter activity. Transient transfection of cells derived from mouse neocortical neuroblasts with constructs from the 5' regions of mouse Lpar1 gene revealed the region between -248 to +225 serving as the basal promoter for Lpar1. This region also lacks a TATA box. For the region between -761 to -248, a negative regulatory element affected the basal expression of Lpar1. This region has three E-box sequences and mutagenesis of these E-boxes, followed by transient expression, demonstrated that two of the E-boxes act as negative modulators of Lpar1. One of these E-box sequences bound the HeLa E-box binding protein (HEB), and modulation of HEB levels in the transfected cells regulated the transcription of the reporter gene. Based on our data, we propose that HEB may be required for a proper regulation of Lpar1 expression in the embryonic neocortical neuroblast cells and to affect its function in both normal brain development and disease settings.

Cloning and Characterization of Porcine Uroplakin II Gene

  • D. N. Kwon;H. K. Shin;C. K. Hwang;D. W. Ok;Kim, J. H.
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.19-19
    • /
    • 2001
  • Mammalian urothelium undergoes unique membrane specialization by making the asymmetric unit membrane (AUM) that is covered with the apical cell surface during terminal differentiation. The AUM contains several major integral membrane proteins including uroplakin Ia, Ib, II and III. The genes for uroplakins have been cloned from humans and mice, but not from porcine. In this study, we report the cloning of the UPII genomic DNA, which codes for the full length open reading frame for the uroplakin II protein. The deduced amino acid sequence encodes of a hydrophobic NH$_2$-terminal peptide, a prosequence, and a mature protein. The prosequence contains three potential N-glycosylation sites and a RGRR cleavage site that may be involved in uroplakin II processing and maturation. Northern and immunohistochemistry analyses showed that the porcine UPII gene is only expressed in urothelium and that the protein was specifically localized in urothelial superficial cells. A 2kb of upstream in the promoter sequence contains multiple transcription factor binding sites, including GC-box, SPI, AP2, and GATA-box sites, but not for TATA or CAAT-box sequences. Comparison of the porcine UPII promoter sequence with that of the murine by MEME system presented two conserved motifs, suggesting a cis-acting regulatory role for the conserved sequences. Sequence homology between two species in motif A and B was 79% and 80% respectively, although their relative locations were different. During the gestation, mouse bladder at estrus stages and day 10 after parturition showed higher UPII expression, while showed lower expression at peri-implantation stage. Taken together, our results showed that the porcine UPII gene was expressed highly and specifically in the bladder urothelium and that steroid hormones for implantation changed the expression of UPII in the bladder, although the biological significance of UPII remains to be not determined.

  • PDF

Identification and Expression of Retroviral Envelope Polyprotein in the Dogfish Squalus mitsukurii

  • Kim, Soo Cheol;Sumi, Kanij Rukshana;Choe, Myeong Rak;Kho, Kang Hee
    • Journal of Marine Life Science
    • /
    • v.1 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • Determining the infection history of living organisms is essential for understanding the evolution of infection agents with their host, particularly for key aspects such as immunity. Viruses, which can spread between individuals and often cause disease, have been widely examined. The increasing availability of fish genome sequences has provided specific insights into the diversity and host distribution of retroviruses in fish. The shortspine spurdog (Squalus mitsukurii) is an important elasmobranch species; this medium-sized dogfish typically lives at depths of 100~500 m. However, the retroviral envelope polyprotein in dogfish has not been examined. Thus, the aim of the present study was to identify and analyze the retroviral envelope polyprotein in various tissues of dogfish. The 1334-base pair full-length novel cDNA of dogfish envelope polyprotein (dEnv) was obtained by 3' and 5'-rapid amplification of cDNA end analysis from S. mitsukurii. The open reading frame showed a complete coding sequence of 815 base pairs with a deduced peptide sequence of 183 amino acids that exhibited 34~50% identity with other fish and bird species. It was also expressed according to reverse transcription and real-time polymerase chain reaction in the kidney, liver, intestine, and lung, but not in the gill. This distribution can be assessed by identifying and analyzing endogenous retroviruses in fish, which consists of three main genes: gag, pol and env. Dogfish envelope polyprotein sequence is likely important in evolution and induces rearrangements, altering the regulatory and coding sequences. This is the first report of the identification and molecular characterization of retroviral envelope polyprotein in various tissues of S. mitsukurii.

Isolation and Characterization of Paraquat-inducible Promoters from Escherichia coli

  • Lee, Joon-Hee;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.277-283
    • /
    • 1997
  • Promoters inducible by paraquat, a superocide-generating agent, were isolated from Escherichia coli using a promoter-probing plasmid pRS415 with promoterless lacA gene. Twenty one promoters induced by paraquat were selected and further characterized. From sequence analysis, thirteen of the promoters were mapped to their specific loci on the Escherichia coli chromosome. Several promoters were mapped to the upstream of known genes such as usgl, katG, and mglB, whose relationships with superoxide response have not been previously reported. Other promoters were mapped to the upstream region of unknown open reading frames. Downstream of HC 96 promoter are uncharacterized ORFs whose sequences are homologous to ABC-transporter subunits. Downstream of HC84 promoter is an ORF encoding a transcriptional regulator-like protein, which contains a LysR family-specific HTH (helix-turn-helix) DNA bindign motif. We investigated whether these promoters belong to the soxRS regulon. All promoters except HC96 were found to belong to the soxRS regulon. The HC96 promoter was significantly induced by paraquat in the soxRS deletion mutant strain. The basal transcription level of three promoters (HE43, HC71, HD94) significantly increased at the stationary phase, implying that they are regulated by RpoS. However, paraquat inducibility of all promoters disappeared in the stationary phase, suggesting that SoxRS regulatory system is active only in rapidly growing cells.

  • PDF

Examination of Improved Tetracycline Inducible Gene Expression System In Vitro (새로운 Tetracycline 유도적 유전자 발현 System의 In Vitro 검정)

  • Kwon, Mo Sun;Kim, Teoan;Koo, Bon Chul
    • Reproductive and Developmental Biology
    • /
    • v.37 no.3
    • /
    • pp.109-115
    • /
    • 2013
  • Until recently the most popular tetracycline-inducible gene expression system has been the one developed by Gossen and Bujard. In this study, we tested the latest version of same system and the results are summarized as follows: Compared with previous one, the difference of new system are minor changes of nucleotide sequences in transactivator and tetracycline response element (TRE) regions. Sensitivity to the doxycycline (a tetracycline derivative) was improved. Leakiness of GFP marker gene expression in non-inducible condition was significantly decreased. Higher expression of the marker gene was observed when the cells were fed with doxycycline-containing medium. Optimal insertion site of woodchuck posttranscriptional regulatory element (WPRE) sequence which was known to increase gene expression was different depending on the origin of cells. In chicken embryonic fibroblast, location of WPRE sequence at 3' end of TRE resulted in the highest GFP expression. In bovine embryonic fibroblasts, 3' end of transactivator was the best site for the GFP expression.