• 제목/요약/키워드: Regularization

검색결과 487건 처리시간 0.022초

Structural damage identification based on transmissibility assurance criterion and weighted Schatten-p regularization

  • Zhong, Xian;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • 제82권6호
    • /
    • pp.771-783
    • /
    • 2022
  • Structural damage identification (SDI) methods have been proposed to monitor the safety of structures. However, the traditional SDI methods using modal parameters, such as natural frequencies and mode shapes, are not sensitive enough to structural damage. To tackle this problem, this paper proposes a new SDI method based on transmissibility assurance criterion (TAC) and weighted Schatten-p norm regularization. Firstly, the transmissibility function (TF) has been proved a useful damage index, which can effectively detect structural damage under unknown excitations. Inspired by the modal assurance criterion (MAC), TF and MAC are combined to construct a new damage index, so called as TAC, which is introduced into the objective function together with modal parameters. In addition, the weighted Schatten-p norm regularization method is adopted to improve the ill-posedness of the SDI inverse problem. To evaluate the effectiveness of the proposed method, some numerical simulations and experimental studies in laboratory are carried out. The results show that the proposed method has a high SDI accuracy, especially for weak damages of structures, it can precisely achieve damage locations and quantifications with a good robustness.

A hybrid-separate strategy for force identification of the nonlinear structure under impact excitation

  • Jinsong Yang;Jie Liu;Jingsong Xie
    • Structural Engineering and Mechanics
    • /
    • 제85권1호
    • /
    • pp.119-133
    • /
    • 2023
  • Impact event is the key factor influencing the operational state of the mechanical equipment. Additionally, nonlinear factors existing in the complex mechanical equipment which are currently attracting more and more attention. Therefore, this paper proposes a novel hybrid-separate identification strategy to solve the force identification problem of the nonlinear structure under impact excitation. The 'hybrid' means that the identification strategy contains both l1-norm (sparse) and l2-norm regularization methods. The 'separate' means that the nonlinear response part only generated by nonlinear force needs to be separated from measured response. First, the state-of-the-art two-step iterative shrinkage/thresholding (TwIST) algorithm and sparse representation with the cubic B-spline function are developed to solve established normalized sparse regularization model to identify the accurate impact force and accurate peak value of the nonlinear force. Then, the identified impact force is substituted into the nonlinear response separation equation to obtain the nonlinear response part. Finally, a reduced transfer equation is established and solved by the classical Tikhonove regularization method to obtain the wave profile (variation trend) of the nonlinear force. Numerical and experimental identification results demonstrate that the novel hybrid-separate strategy can accurately and efficiently obtain the nonlinear force and impact force for the nonlinear structure.

통합 베이즈 티코노프 정규화 방법의 확장과 영상복원에 대한 응용 (An Extension of Unified Bayesian Tikhonov Regularization Method and Application to Image Restoration)

  • 류재흥
    • 한국전자통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.161-166
    • /
    • 2020
  • 본 논문은 통합 베이즈 티코노프 정규화 방법을 확장하는 것을 제시한다. 통합된 방법은 티코노프 정규화 모수와 베이즈 하이퍼 모수들의 관계를 정립하고 최대 사후 확률과 근거 프레임워크를 사용한 정규화 모수를 구하는 공식을 제시한다. 데이터 행렬의 차원이 m by n (m >= n)일 때, total misfit는 기존의 m에서 m ± n로 확장된다. 따라서 탐색 범위도 1에서 2n+1개의 정수로 확장된다. 선형 탐색보다는 황금분할 탐색으로 시간을 줄인다. 상대오차를 최적화하는 새로운 벤치마크를 제안하고 이를 목표로 하는 새 모델 선택 판정기준을 소개한다. 실험결과는 영상 복원 문제에 대하여 제안하는 방법의 효능을 보여준다.

Anti-sparse representation for structural model updating using l norm regularization

  • Luo, Ziwei;Yu, Ling;Liu, Huanlin;Chen, Zexiang
    • Structural Engineering and Mechanics
    • /
    • 제75권4호
    • /
    • pp.477-485
    • /
    • 2020
  • Finite element (FE) model based structural damage detection (SDD) methods play vital roles in effectively locating and quantifying structural damages. Among these methods, structural model updating should be conducted before SDD to obtain benchmark models of real structures. However, the characteristics of updating parameters are not reasonably considered in existing studies. Inspired by the l norm regularization, a novel anti-sparse representation method is proposed for structural model updating in this study. Based on sensitivity analysis, both frequencies and mode shapes are used to define an objective function at first. Then, by adding l norm penalty, an optimization problem is established for structural model updating. As a result, the optimization problem can be solved by the fast iterative shrinkage thresholding algorithm (FISTA). Moreover, comparative studies with classical regularization strategy, i.e. the l2 norm regularization method, are conducted as well. To intuitively illustrate the effectiveness of the proposed method, a 2-DOF spring-mass model is taken as an example in numerical simulations. The updating results show that the proposed method has a good robustness to measurement noises. Finally, to further verify the applicability of the proposed method, a six-storey aluminum alloy frame is designed and fabricated in laboratory. The added mass on each storey is taken as updating parameter. The updating results provide a good agreement with the true values, which indicates that the proposed method can effectively update the model parameters with a high accuracy.

어려운 고속도로 환경에서 Lidar를 이용한 안정적이고 정확한 다중 차선 인식 알고리즘 (Stable and Precise Multi-Lane Detection Algorithm Using Lidar in Challenging Highway Scenario)

  • 이한슬;서승우
    • 전자공학회논문지
    • /
    • 제52권12호
    • /
    • pp.158-164
    • /
    • 2015
  • 차선인식은 차선 유지, 경로 계획 등을 가능하게 하는 기술로서 자율주행차를 구성하는 가장 중요한 요소 중 하나이다. 카메라 센서를 이용한 연구가 많이 진행되었으나 센서의 특성상 화각의 한계가 존재하며 조도 환경에 취약한 단점이 있다. 반면 Lidar 센서는 넓은 화각과 함께 표면의 반사율 정보를 이용하기에 조도의 영향을 받지 않는 장점이 있다. 기존 연구에선 Hough 변환, 히스토그램 등의 방법을 이용하였는데 도로 표시들이 혼재한 상황에서 올바른 차선 인식이 이루어지지 않거나 다수의 차선이 존재함에도 주행 차선만 인식 되는 문제점들이 존재한다. 본 논문에서는 RANSAC과 regularization을 적용해 도로 표시가 혼재된 고속도로 환경에서도 정확하고 안정적인 다중 차선 인식 알고리즘을 제안한다. 정확한 차선 후보군 추출을 위해 원 모델 RANSAC을 적용하였고 안정적인 다중 차선 검출을 위해 피팅에 regularization을 추가로 제안하였다. 직접 취득한 도로 주행 데이터에 적용하여 높은 정확도와 실시간성을 정량적으로 검증하였다.

충격응답함수와 조정법을 이용한 항공기 날개의 충격하중 복원 연구 (A Study on Reconstructing Impact Forces of an Aircraft Wing Using Impact Response Functions and Regularization Methods)

  • 박찬익
    • 한국항공우주학회지
    • /
    • 제34권8호
    • /
    • pp.41-46
    • /
    • 2006
  • 충격응답함수와 조정법(regularization methods)을 이용하여 항공기 날개의 충격하중 복원 가능성을 검토하였다. 충격하중에 대한 구조의 응답을 내타낼 수 있는 충격응답함수를 날개 유한요소모델의 강성과 질량 자료로 유도하였다. 일반적으로 부적합(ill-posed) 특성을 지닌 충격응답함수의 역행렬은 반복 Tikhonov 조종법(Iterative Tikhonov Regularization Method)과 일반화 특이치 분해법(Generalized Singular Value Decomposition Method)을 사용하여 구하였다. 수치적 입증을 위하여 전투기급 주익을 사용하였다. 해당 주익의 유한요소해석을 통하여 임의의 충격하중에 대한 변위와 변형률을 계산하였으며, 이를 충격응답함수로 계산한 결과와 비교하였다. 또한, 유한요소해석에서 계산된 변형률을 사용하여 충격하중을 복원하였다. 수치적 입증 결과 항공기 구조의 충격하중 모니터링이 본 방법으로 가능할 수 있음을 보여주었다.

윤곽 방향성을 고려한 적응적 영상복원 (Adaptive Image Restoration Considering the Edge Direction)

  • 전우상;이명섭;장호
    • 정보처리학회논문지B
    • /
    • 제16B권1호
    • /
    • pp.1-6
    • /
    • 2009
  • 움직임에 의해 흐려지고 잡음으로 훼손된 영상을 복원하는 것은 매우 어렵다. 기존의 방법들은 영상의 국부적인 특성을 고려하지 않고 영상 전체에 일률적으로 복원처리를 행함으로써 윤곽부분에서 리플잡음을 초래하고 평면부분에서도 잡음증폭을 피할 수 없다. 이러한 문제점을 개선하기 위하여, 본 논문에서는 윤곽방향을 고려한 방향성 정칙화 연산자를 사용하여 적응적으로 처리되는 반복 정칙화 방법을 제안한다. 그것과 더불어 적응 정칙화 파라메타와 이완 파라메타를 적용하는 알고리즘도 함께 제안한다. 결론적으로, 이 방법은 기존의 방법과 비교할 때, 평면부분에서 잡음증폭을 억제하고, 시각적으로 중요한 윤곽부분의 리플잡음을 억제함으로써 윤곽부분 복원에 더욱 효율적임을 실험을 통하여 확인할 수 있었으며 또한 ISNR 면에서도 우수하였다는 것을 확인할 수 있다.

안정화된 딥 네트워크 구조를 위한 다항식 신경회로망의 연구 (A Study on Polynomial Neural Networks for Stabilized Deep Networks Structure)

  • 전필한;김은후;오성권
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1772-1781
    • /
    • 2017
  • In this study, the design methodology for alleviating the overfitting problem of Polynomial Neural Networks(PNN) is realized with the aid of two kinds techniques such as L2 regularization and Sum of Squared Coefficients (SSC). The PNN is widely used as a kind of mathematical modeling methods such as the identification of linear system by input/output data and the regression analysis modeling method for prediction problem. PNN is an algorithm that obtains preferred network structure by generating consecutive layers as well as nodes by using a multivariate polynomial subexpression. It has much fewer nodes and more flexible adaptability than existing neural network algorithms. However, such algorithms lead to overfitting problems due to noise sensitivity as well as excessive trainning while generation of successive network layers. To alleviate such overfitting problem and also effectively design its ensuing deep network structure, two techniques are introduced. That is we use the two techniques of both SSC(Sum of Squared Coefficients) and $L_2$ regularization for consecutive generation of each layer's nodes as well as each layer in order to construct the deep PNN structure. The technique of $L_2$ regularization is used for the minimum coefficient estimation by adding penalty term to cost function. $L_2$ regularization is a kind of representative methods of reducing the influence of noise by flattening the solution space and also lessening coefficient size. The technique for the SSC is implemented for the minimization of Sum of Squared Coefficients of polynomial instead of using the square of errors. In the sequel, the overfitting problem of the deep PNN structure is stabilized by the proposed method. This study leads to the possibility of deep network structure design as well as big data processing and also the superiority of the network performance through experiments is shown.

레귤러라이제이션 기반 개선된 밀도 무관 퍼지 클러스터링 (Improved Density-Independent Fuzzy Clustering Using Regularization)

  • 한수환;허경용
    • 한국정보통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.1-7
    • /
    • 2020
  • FCM(Fuzzy C-Means)으로 대표되는 퍼지 클러스터링은 간단하면서도 효율적인 클러스터링 방법이지만, FCM에서 사용하는 목적 함수에서는 밀도가 높은 클러스터가 클러스터링 결과에 많은 영향을 미치도록 함으로써 클러스터 사이의 밀도 차에 의해 클러스터링 결과에 왜곡이 발생할 수 있다. 이러한 밀도 문제를 완화하는 방법의 하나로 FCM의 목적 함수에 밀도 차이를 보정할 수 있는 항을 추가한 EDI-FCM(Extended Density-Independent FCM)이 있다. 이 논문에서는 레귤러라이제이션을 이용하여 EDI-FCM을 보완한 Regularized EDI-FCM을 제안한다. 레귤러라이제이션은 해공간을 평탄화하고 잡음 민감성을 줄이기 위해 흔히 사용되는 방법으로, 클러스터링에서는 특정 클러스터가 클러스터링 결과에 미치는 영향을 줄이는 역할을 한다. 제안하는 방법은 FCM이나 EDI-FCM과 비교했을 때 실제 클러스터 중심에 빠르고 정확하게 수렴한다는 것을 실험 결과를 통해 확인할 수 있다.

자기 정규화를 통한 도메인 불변 특징 학습 (Learning Domain Invariant Representation via Self-Rugularization)

  • 현재국;이찬용;김호성;유현정;고은진
    • 한국군사과학기술학회지
    • /
    • 제24권4호
    • /
    • pp.382-391
    • /
    • 2021
  • Unsupervised domain adaptation often gives impressive solutions to handle domain shift of data. Most of current approaches assume that unlabeled target data to train is abundant. This assumption is not always true in practices. To tackle this issue, we propose a general solution to solve the domain gap minimization problem without any target data. Our method consists of two regularization steps. The first step is a pixel regularization by arbitrary style transfer. Recently, some methods bring style transfer algorithms to domain adaptation and domain generalization process. They use style transfer algorithms to remove texture bias in source domain data. We also use style transfer algorithms for removing texture bias, but our method depends on neither domain adaptation nor domain generalization paradigm. The second regularization step is a feature regularization by feature alignment. Adding a feature alignment loss term to the model loss, the model learns domain invariant representation more efficiently. We evaluate our regularization methods from several experiments both on small dataset and large dataset. From the experiments, we show that our model can learn domain invariant representation as much as unsupervised domain adaptation methods.