최근 스마트팩토리와 인공지능 기술의 수요 증가로 인해 다양한 분야에서 인공지능 기술을 적용하는 연구가 진행되고 있다. 결함 검사 분야에서도 인공지능 알고리즘을 도입하기 위한 노력을 기울이고 있다. 특히, 금속 외관의 결함을 검출하는 연구는 다른 소재(목재, 플라스틱, 섬유 등)의 결함을 검출하는 연구에 비해 많은 연구가 이루어지고 있다. 본 논문에서는 머신러닝 기법(서포터 벡터 머신(SVM: Support Vector Machine), 소프트맥스 회귀(Softmax Regression), 결정 트리(Decesion Tree))과 차원 축소 알고리즘(주성분 분석(PCA: Principal Component Analysis), 오토인코더(AutoEncoder))의 9가지 조합과 2가지 합성곱신경망(CNN: Convolutional Neural Network) 기법(자체 알고리즘, ResNet)의 금속 외관의 결함 분류 성능 및 속도를 비교하고 분석하는 연구를 수행하고자 한다. 두 종류의 학습 데이터셋((i) 공용 데이터셋(Public Dataset), (ii) 실측 데이터셋(Actual Dataset))에 대한 실험을 통해 각 데이터셋에 대한 성능 및 속도를 비교 분석하고, 가장 효율적인 알고리즘을 찾아낸다.
기업의 성장성, 수익성, 안정성, 활동성, 생산성 등에 대한 다양한 분석이 은행, 신용평가기관, 투자자 등 많은 이해관계자에 의해 실시되고 있고, 이에 대한 다양한 경영분석 지표들 또한 정기적으로 발표되고 있다. 본 연구에서는 이러한 경영분석 지표를 이용하여 어떤 기업이 가까운 미래에 유상증자를 실시하는지를 데이터마이닝을 통해 예측하고자 한다. 본 연구를 통해 어떠한 지표가 유상증자 여부를 예측하는데 도움이 되는가를 살펴 볼 것이며, 그 지표들을 이용하여 예측할 경우 그 예측의 정확도가 어느 정도인지를 분석하고자 한다. 특히 1997년 IMF 금융위기 전후로 유상증자를 결정하는 변수들이 변화하는지, 그리고 예측의 정확성에 분명한 차이가 존재하는지 분석한다. 또한 유상증자 실시 시기를 경영분석 지표 발표 후 1년 내, 1~2년 내, 2~3년 내로 나누어 예측 시기에 따라 예측의 정확성과 결정 변수들의 차이가 존재하는지도 분석한다. 658개의 유가증권상장법인의 경영분석 데이터를 이용하여 실증 분석한 결과, IMF 이후의 유상증자 예측모형이 IMF 이전의 예측모형에 비해 예측 정확도가 높았고, 학습용 데이터의 예측 정확도와 검증용 데이터의 예측 정확도 차이도 IMF 이후가 낮게 나타났다. 이러한 결과는 IMF 이후 재무자료의 정확도가 높아졌고, 기업에게 유상증자의 목적이 더욱 명확해졌다고 해석될 수 있다. 또한 예측기간이 단기인 경우 경영분석 지표 중 안전성에 관련된 지표들의 중요성이 부각되었고, 장기인 경우에는 수익성과 안전성뿐만 아니라 활동성과 생산성 관련지표도 유상증자를 예측하는 데 중요한 것으로 파악되었다. 그리고 모든 예측모형에서 산업코드가 유상증자를 예측하는 중요변수로 포함되었는데 이는 산업별로 서로 다른 유상증자 유형이 존재한다는 점을 시사한다. 본 연구는 투자자나 재무담당자가 유상증자 여부를 장단기 시점에서 예측하고자 할 때 어떠한 경영분석지표를 고려하여 분석하는 것이 바람직한지에 대한 지침을 제공하는데 그 의의가 있다.
부동산 가격을 추정하기 위한 헤도닉 모형(hedonic model)의 적용에서 가장 중요한 사안은 모형의 정확한 구성과 하부시장의 구획이라 할 수 있다. 모형의 구성에 대해서는 비교적 활발한 개선 노력이 있었으나 하부시장 구획은 상대적으로 큰 관심을 받지 못하였다. 그러나 부동산 가격형성 과정의 공간적 범위 파악이 선행되지 않으면 헤도닉 모형의 적용 결과는 그 정확성이 저하될 수밖에 없다. 본 연구는 헤도닉 모형의 성능 개선에 초점을 두고, 서울시 25개 자치구 중 상대적으로 이질적인 부동산 집단으로 구성된 강남구와 비교적 균일한 부동산 집단으로 이루어진 중랑구를 사례지역으로 하여 하부시장 구획을 시도하였다. 먼저 하부시장 구획을 위한 투입변수로 혼합 GWR(Mixed GWR) 모형에서 산출된 가변 회귀계수(variable coefficients)를 사용하였다. 헤도닉 모형의 회귀계수는 부동산을 구성하는 속성항목(attributes)의 잠재가격(shadow price)으로 해석할 수 있기 때문이다. 다음으로 공간적으로 연접된 하부시장을 구획하기 위해 최소신장트리(minimum spanning tree)에 기반한 SKATER 앨고리듬을 사례지역에 적용하였다. 마지막으로 다수준 모형(multi-level model)을 적용하여 구획된 하부시장 결과의 적정성을 검토하였다. 검토 결과, 중랑구는 하부시장이 존재하지 않음을, 강남구는 간선도로를 중심으로 한 5개의 하부시장으로 구분하는 것이 합리적임을 확인하였다. 간선도로와 같은 도시의 인프라는 하부시장 구획에 있어 지금까지 큰 주목을 받지 못한 변수였으나 본 연구를 통해 그 중요성이 실증적으로 확인되었다.
본 연구에서는 적조 Cochlodinium Polykrikoide를 기계학습 방법과 정지궤도 해색위성 영상을 활용하여 탐지하는 방법을 제안한다. 기계학습 모형을 학습시키기 위해 GOCI Level2 자료를 활용하였으며, 국립수산과학원의 적조 속보 자료를 활용하였다. 기계학습 모델은 로지스틱 회귀모형, 의사결정나무 모형, 랜덤포래스트 모형을 사용하였다. 성능 평가 결과 기계학습을 사용하지 않은 전통적인 GOCI 영상 기반 적조 탐지 알고리즘(Son et al.,2012) (75%)과 비교해보았을 때 약 13~22%p (88~98%)의 정확도 향상을 확인할 수 있었다. 또한 기계학습 모형 간 탐지 성능을 비교 분석해본 결과 랜덤 포레스트 모형(98%)이 가장 높은 탐지 정확도를 보였다. 이러한 기계학습 기반 적조 탐지 알고리즘은 향후 적조를 조기에 탐지하고 그 이동과 확산을 추적 모니터링하는데 활용될 수 있을 것이라고 판단된다.
노인장기요양보험에서 가장 중요한 이슈는 급여대상자의 희망, 건강 및 기능상태에 따라 어떤 급여를 제공할 것인가 이다. 이를 해결하고자 노인장기요양보험의 보험자인 국민건강보험 공단은 급여대상자에게 '표준장기요양이용계획서'를 제공하고 있다. 본 연구에서는 표준장기요양이용계획 작성의 효율화 방안을 마련하고자 노인장기요양보험 3차 시범사업 표준이용계획 자료를 활용하여 노인장기요양급여 권고모형을 개발하였다. 모형개발에는 데이터마이닝의 의사결정나무모형, 로지스틱회귀모형, 앙상블 모형의 배깅과 부스팅 기법을 사용하였고, 이 중 실무자가 이해하기 쉬운 의사결정나무를 채택하여 권고모형을 설명 하였다. 본 연구는 노인장기요양보험 제도의 이용계획 수립의 객관성 및 과학성을 확보하고 이용계획 업무를 효율화하는 데에 기여할 것으로 기대된다.
최근 정보기술의 발전으로 복잡하고 방대한 양의 주가 데이터에 대한 실시간 분석이 가능해지면서 인공지능 기법을 활용해 주식 시장의 등락을 예측하고, 이를 기반으로 매매 거래를 수행하는 트레이딩 시스템에 대한 세간의 관심이 높아지고 있다. 본 연구는 이러한 트레이딩 시스템의 시장 예측 알고리즘으로 활용될 수 있는 새로운 주식 시장 등락 예측 모형을 제시한다. 본 연구의 제안 모형은 ${\pi}$-퍼지 논리를 이용해 모든 입력변수의 차원을 low, medium, high로 퍼지변환한 입력값을 대상으로 Support Vector Machine(SVM)을 적용하여 익일 시장의 등락을 예측하도록 설계되었다. 그런데 이 경우 입력변수의 수가 3배로 늘어나기 때문에, 적절한 입력변수의 선택이 요구된다. 이에 본 연구에서는 유전자 알고리즘을 활용하여 입력변수 선택 집합을 최적화하도록 하였으며, 동시에 ${\pi}$-퍼지 논리 및 SVM에 적용되는 조절 파라미터들의 값도 함께 최적화 하도록 하였다. 모형의 성능을 검증하기 위해, 본 연구에서는 지난 2004년부터 2013년까지의 10년치 국내 주식시장 데이터를 기반으로 한 KOSPI 200 지수의 등락 예측에 제안모형을 적용해 보았다. 이 때, 비교모형으로 로지스틱 회귀모형, 다중판별분석, 의사결정나무, 인공신경망, SVM, 퍼지SVM 등도 함께 적용시켜 성과를 정밀하게 검증해 보고자 하였다. 그 결과, 제안모형이 예측 정확도는 물론 투자수익률(Return on Investment) 측면에서도 다른 모든 비교모형들에 비해 월등히 우수한 성능을 보임을 확인할 수 있었다.
자동차는 우리의 일상에 필수재가 된 지 오래지만 자동차 교통사고로 인한 사회적 비용이 국가 예산의 9%를 넘을 정도로 심각하여 이에 대한 국가적인 예방 및 대응 체계 구축이 매우 필요한 실정이다. 이에 본 연구에서는 빅데이터 분석 기법을 활용하여 차대차 교통사고의 상해 심각도를 정확히 예측할 수 있는 모형을 제시하고자 하였다. 이를 위해 과거 3년간의 전국교통사고 발생 데이터를 토대로, K-최근접 이웃, 로지스틱 회귀분석, 나이브베이즈, 의사결정나무, 앙상블 알고리즘을 적용하여 각 모델의 상해 심각도 분류의 성능을 비교 분석하였다. 특히 이 과정에서 각 상해 심각도 수준 간의 데이터 수에 차이가 있음에 주목하여 표본수가 많은 그룹에 대해서는 과소표본추출을 시행하는 등의 방법을 통해 분류 예측의 정확도를 높일 수 있었고, 분산 분석을 통해 모델의 유의성을 검증하였다.
상황 인식은 유비쿼터스컴퓨팅 환경에 대한 진화를 변화시켰고 무선 센서네트워크 기술은 많은 응용기기에 대한 새로운 방법을 제시하였다. 특히, 행동 인식은 사람의 응용서비스를 제공하는데 있어 특정 사용자의 상황을 인식하는 핵심 요소로 의학, 취미, 군사 분야에서 폭넓은 응용분야를 갖고 있고 사용반경의 확대에서도 효율과 정확도를 높이는 방법에 크게 기여한다. 스마트폰 센서로부터 나오는 데이터로부터 프레임이 512인셈플 데이터를 얻어, 프레임간50%의 오버랩을 갖도록 하고 Machine Learning Algorithm 인 WEKA Experimenter (University of Waikato, Version 3.6.10)을 써서 데이더로부터 시간영역 특징값을 추출함으로써 행동 인식에 대한 99.33%의 정확도를 얻을 수 있었다. 또한, WEKA Experimenter의 사용기법인 C4.5 Decision Tree과 다른 방법인 BN, NB, SMO or Logistic Regression간의 비교실험을 하였다.
International Journal of Computer Science & Network Security
/
제24권5호
/
pp.111-118
/
2024
In general network-based intrusion detection system is designed to detect malicious behavior directed at a network or its resources. The key goal of this paper is to look at network data and identify whether it is normal traffic data or anomaly traffic data specifically for accounting information systems. In today's world, there are a variety of principles for detecting various forms of network-based intrusion. In this paper, we are using supervised machine learning techniques. Classification models are used to train and validate data. Using these algorithms we are training the system using a training dataset then we use this trained system to detect intrusion from the testing dataset. In our proposed method, we will detect whether the network data is normal or an anomaly. Using this method we can avoid unauthorized activity on the network and systems under that network. The Decision Tree and K-Nearest Neighbor are applied to the proposed model to classify abnormal to normal behaviors of network traffic data. In addition to that, Logistic Regression Classifier and Support Vector Classification algorithms are used in our model to support proposed concepts. Furthermore, a feature selection method is used to collect valuable information from the dataset to enhance the efficiency of the proposed approach. Random Forest machine learning algorithm is used, which assists the system to identify crucial aspects and focus on them rather than all the features them. The experimental findings revealed that the suggested method for network intrusion detection has a neglected false alarm rate, with the accuracy of the result expected to be between 95% and 100%. As a result of the high precision rate, this concept can be used to detect network data intrusion and prevent vulnerabilities on the network.
국내 소프트웨어(SW) 개발인력의 미충원율은 매우 높으며, 특히 2년 이상의 현장경력이 있는 고급 개발자의 부족문제는 심각하다. 최근 정부도 이를 인식하고, 정책적으로 SW개발 신규인력 양성에 힘을 기울이고 있다. 그러나, 이러한 노력은 초급개발자의 수급문제를 해결하는데 효과적일 수 있지만, 업계에서 요구하는 고급 개발자의 부족현상을 해결하는 근본적인 대책으로 인식되지는 못하고 있다. SW 전문개발자를 양성하기 위해서는 초급개발자들이 지속적으로 직무를 수행하여 풍부한 업무경험을 갖춘 고급 개발자로 성장해야 하기 때문이다. 이에, 본 연구는 국내 SW업체에서 근무하고 있는 개발관련 인력들의 업무 지속수행 의도를 조사하고, 이에 영향을 주는 주요요인들을 분석하였다. 이를 위해, 2014년 9월부터 10월까지 국내 SW업체에 근무하고 있는 현직 개발자 총 130명을 대상으로 설문조사를 수행하였으며, 이를 기반으로 SW개발업무 지속수행의도 및 이에 영향을 주는 요인들을 개발자의 특성, 직무환경, 그리고 SW개발자에 대한 사회적 인식 및 산업전망 등의 측면에서 분석하였다. 분석에는 데이터마이닝 기법들 중에서, 분석과정에서의 설명능력이 있는 회귀분석과 의사결정나무가 사용되었다. 회귀분석 결과, SW개발자가 스스로 인식하는 근무 가능한 연령이 높을수록, 내성적인 성향을 가질수록, 또한 적성에 맞아서 직무를 선택한 경우, 지속적 직무 수행 의도가 높은 것으로 나타났다. 이와 더불어, 선형회귀분석에서는 유의하지 않았으나, 규칙기반의 의사결정나무 분석에서 파악된 추가적 요인으로, 새로운 기술에 대한 학습능력 및 SW산업에 대한 전망이 직무 지속수행의도에 영향을 미치는 것으로 나타났다. 이러한 연구결과는 기업의 인적자원관리 및 고급 SW인력 양성정책에 활용될 수 있을 것으로 생각되며, 궁극적으로 SW개발인력의 직무 지속성을 증진시키는 데 기여할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.