• 제목/요약/키워드: Regression models with stationary and invertible ARMA errors, fractional Bayes factor

검색결과 1건 처리시간 0.016초

DEFAULT BAYESIAN INFERENCE OF REGRESSION MODELS WITH ARMA ERRORS UNDER EXACT FULL LIKELIHOODS

  • Son, Young-Sook
    • Journal of the Korean Statistical Society
    • /
    • 제33권2호
    • /
    • pp.169-189
    • /
    • 2004
  • Under the assumption of default priors, such as noninformative priors, Bayesian model determination and parameter estimation of regression models with stationary and invertible ARMA errors are developed under exact full likelihoods. The default Bayes factors, the fractional Bayes factor (FBF) of O'Hagan (1995) and the arithmetic intrinsic Bayes factors (AIBF) of Berger and Pericchi (1996a), are used as tools for the selection of the Bayesian model. Bayesian estimates are obtained by running the Metropolis-Hastings subchain in the Gibbs sampler. Finally, the results of numerical studies, designed to check the performance of the theoretical results discussed here, are presented.