Kim, Hyeon-Seok;Im, Gang-Won;Lee, Yeong-In;Nam, Du-Hui
Journal of Korean Society of Transportation
/
v.25
no.4
/
pp.109-121
/
2007
In this study, an imputation model using circular probability distribution was developed in order to overcome problems of missing data from a traffic survey. The existing ad-hoc or heuristic, model-based and algorithm-based imputation techniques were reviewed through previous studies, and then their limitations for imputing missing traffic volume data were revealed. The statistical computing language 'R' was employed for model construction, and a mixture of von Mises probability distribution, which is classified as symmetric, and unimodal circular probability were finally fitted on the basis of traffic volume data at survey stations in urban and rural areas, respectively. The circular probability distribution model largely proved to outperform a dummy variable regression model in regards to various evaluation conditions. It turned out that circular probability distribution models depict circularity of hourly volumes well and are very cost-effective and robust to changes in missing mechanisms.
In this study, the methodology of the springback prediction of automotive parts applied 3rd generation AHSS was investigated using the response surface model analysis based on a regression model, and the meta model analysis based on a Kriging model. To design the learning data set for constructing the springback prediction models, and the experimental design was conducted at three levels for each processing variable using the definitive screening designs method. The hat-shaped member, which is the basic shape of the member parts, was selected and the springback values were measured for each processing type and processing variable using the finite element analysis. When the nonlinearity of the variables is small during the hat-shaped member forming, the response surface model and the meta model can provide the same processing parameter. However, the accuracy of the springback prediction of the meta model is better than the response surface model. Even in the case of the simple shape parts forming, the springback prediction accuracy of the meta model is better than that of the response surface model, when more variables are considered and the nonlinearity effect of the variables is large. The efficient global optimization algorithm-based Kriging is appropriate in resolving the high computational complexity optimization problems such as developing automotive parts.
Shin, Yoon Su;Choi, Seung Pil;Kim, Jun Seong;Kim, Uk Nam
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.30
no.6_1
/
pp.529-538
/
2012
By using an algorithm derived by a multiple linear regression analysis, a technique for filtering was developed; and by using the developed technique, the results of conducting filtering of the raw data collected via scanning with a terrestrial LiDAR the actual sloped terrain was analyzed. As such, when filtering was applied by dividing the observation areas into two areas with the topographical line as a reference in order to improve the filtering accuracy, it was seen that the filtering accuracy improved by about 8.73% as compared to when filtering was applied without dividing the observation area. In addition, considering the fact that the accuracy improved by 5~7% when the sloped sides of a multicurvature topography were divided and a complex filtering applied as compared to when filtering was applied for the entire area or by regions, it can be asserted that the accuracy was higher when a complex filtering was conducted by dividing the sloped areas where the slope is not constant due to the multi-curvature of topography.
The purpose of the study is to verify what cognitive variables have significant effect on proportional problem solving. For this aim, the study classified proportional problem into well-structured, moderately-structured, ill-structured problem by the level of structuredness, then classified the cognitive variables as well into factual algorithm knowledge, conceptual knowledge, knowledge of problem type, quantity change recognition and meta-cognition(meta-regulation and meta-knowledge). Then, it verified what cognitive variables have significant effects on 6th graders' proportional problem solving abilities through multiple regression analysis technique. As a result of the analysis, different cognitive variables effect on solving proportional problem classified by the level of structuredness. Through the results, the study suggest how to teach and assess proportional reasoning and problem solving in elementary mathematics class.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.30
no.1
/
pp.124-131
/
2002
In this study, a preliminary design code was developed for the initiation of HTPB/LOX hybrid rocket system. HTPB was assumed to have a constant regression rate. And initial input parameters; number of port, initial O/F ratio F/W ratio, and chamber pressure, were varied to analyze the effects on the performance and geometry of rocket system. The results showed a qualitatively good agreement with previous data. And it was revealed that there exists a number of design results that meet the mission requirements and that we could find an optimal design case if a proper constraint would be imposed. Thus, it is natural to account for the optimal algorithm during the design procedure and to consider more realistic and reliable formulations used for weight estimation of structural supports and accessories.
Because of the low power and low rate of a sensor network, outlier is frequently occurred in the time series data of sensor network. In this paper, we suggest periodic pattern analysis that is applied to the time series data of sensor network and predict outlier that exist in the time series data of sensor network. A periodic pattern is minimum period of time in which trend of values in data is appeared continuous and repeated. In this paper, a quantization and smoothing is applied to the time series data in order to analyze the periodic pattern and the fluctuation of each adjacent value in the smoothed data is measured to be modified to a simple data. Then, the periodic pattern is abstracted from the modified simple data, and the time series data is restructured according to the periods to produce periodic pattern data. In the experiment, the machine learning is applied to the periodic pattern data to predict outlier to see the results. The characteristics of analysis of the periodic pattern in this paper is not analyzing the periods according to the size of value of data but to analyze time periods according to the fluctuation of the value of data. Therefore analysis of periodic pattern is robust to outlier. Also it is possible to express values of time attribute as values in time period by restructuring the time series data into periodic pattern. Thus, it is possible to use time attribute even in the general machine learning algorithm in which the time series data is not possible to be learned.
Journal of the Korean Data and Information Science Society
/
v.12
no.2
/
pp.1-10
/
2001
Neural networks we increasingly being seen as an addition to the statistics toolkit which should be considered alongside both classical and modern statistical methods. Neural networks are usually useful for classification and function estimation. In this paper we concentrate on function estimation using neural networks with weight decay factor The use of weight decay seems both to help the optimization process and to avoid overfitting. In this type of neural networks, the problem to decide the number of hidden nodes, weight decay parameter and iteration number of learning is very important. It is called the optimization of weight decay neural networks. In this paper we propose a automatic optimization based on genetic algorithms. Moreover, we compare the weight decay neural network automatically learned according to automatic optimization with ordinary neural network, projection pursuit regression and support vector machines.
Journal of the Korean Society of Propulsion Engineers
/
v.20
no.6
/
pp.29-37
/
2016
This paper proposes a shape optimization of the metal boss for a composite motor case using finite element analysis. For the structural safety and the weight reduction of the composite motor case, under the internal pressure, the fiber stress in the dome area and the tightening bolt stress are constrained and the boss weight is set to objective function, respectively. The response surface models are constructed for the performance characteristics by using response surface method. The significance of the design variables about the performance characteristics is evaluated through the ANOVA(analysis of variance) and the goodness of fit test for the constructed model is performed through the regression analysis. The SQP(sequential quadratic programming) algorithm is used for the optimization and the proposed method is verified by performing structural analysis for the optimum shape.
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2002.11a
/
pp.59-62
/
2002
Wavelength selection and prediction algorithm for determining hematocrit are investigated. A model based on the difference in optical density induced by the pulsation of heart beat is developed by taking approximation of Twersky's theory on the assumption that the variation of blood vessel size is small during arterial pulsing[1]. A device is constructed with a five-wavelength LED array as light source. The selected wavelengths are two isobestic points and three in compensation for tissue scattering. Data are collected from 549 out-patients who are randomly grouped as calibration and prediction sets. The range of percent hematocrit was 19.3∼51.8. The ratio of the variations of optical density between systole and diastole at two different wavelengths is used as a variable. We selected several such variables that show high reproducibility among all variables. Multiple linear regression analysis is made. The relative percent error is 8% and the standard deviation is 3.67 for the calibration set. The relative % error and standard deviation of the prediction set are 8.2% and 3.69 respectively. We successfully demonstrate the possibility of non-invasive hematocrit measurement, particularly, using the wavelengths below 1000nm.
Journal of the Korean Institute of Intelligent Systems
/
v.13
no.6
/
pp.635-642
/
2003
Reinforcement learning got successful results in a lot of applications such as control and scheduling. Various function approximation methods have been studied in order to improve the learning speed and to solve the shortage of storage in the standard reinforcement learning algorithm of Q-Learning. Most function approximation methods remove some special quality of reinforcement learning and need prior knowledge and preprocessing. Fuzzy Q-Learning needs preprocessing to define fuzzy variables and Local Weighted Regression uses training examples. In this paper, we propose a function approximation method, Fuzzy Q-Map that is based on on-line fuzzy clustering. Fuzzy Q-Map classifies a query state and predicts a suitable action according to the membership degree. We applied the Fuzzy Q-Map, CMAC and LWR to the mountain car problem. Fuzzy Q-Map reached the optimal prediction rate faster than CMAC and the lower prediction rate was seen than LWR that uses training example.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.