• Title/Summary/Keyword: Regression algorithm

Search Result 1,055, Processing Time 0.041 seconds

MRI Assessment of Complete Response to Preoperative Chemoradiation Therapy for Rectal Cancer: 2020 Guide for Practice from the Korean Society of Abdominal Radiology

  • Seong Ho Park;Seung Hyun Cho;Sang Hyun Choi;Jong Keon Jang;Min Ju Kim;Seung Ho Kim;Joon Seok Lim;Sung Kyoung Moon;Ji Hoon Park;Nieun Seo;Korean Society of Abdominal Radiology Study Group for Rectal Cancer
    • Korean Journal of Radiology
    • /
    • v.21 no.7
    • /
    • pp.812-828
    • /
    • 2020
  • Objective: To provide an evidence-based guide for the MRI interpretation of complete tumor response after neoadjuvant chemoradiation therapy (CRT) for rectal cancer using visual assessment on T2-weighted imaging (T2) and diffusion-weighted imaging (DWI). Materials and Methods: PubMed MEDLINE, EMBASE, and Cochrane Library were searched on November 28, 2019 to identify articles on the following issues: 1) sensitivity and specificity of T2 or DWI for diagnosing pathologic complete response (pCR) and the criteria for MRI diagnosis; 2) MRI alone vs. MRI combined with other test(s) in sensitivity and specificity for pCR; and 3) tests to select patients for the watch-and-wait management. Eligible articles were selected according to meticulous criteria and were synthesized. Results: Of 1615 article candidates, 55 eligible articles (for all three issues combined) were identified. Combined T2 and DWI performed better than T2 alone, with a meta-analytic summary sensitivity of 0.62 (95% confidence interval [CI], 0.43-0.77; I2 = 80.60) and summary specificity of 0.89 (95% CI, 0.80-0.94; I2 = 92.61) for diagnosing pCR. The criteria for the complete response on T2 in most studies had the commonality of remarkable tumor decrease to the absence of mass-like or nodular intermediate signal, although somewhat varied, as follows: (near) normalization of the wall; regular, thin, hypointense scar in the luminal side with (near) normal-appearance or homogeneous intermediate signal in the underlying wall; and hypointense thickening of the wall. The criteria on DWI were the absence of a hyperintense signal at high b-value (≥ 800 sec/mm2) in most studies. The specific algorithm to combine T2 and DWI was obscure in half of the studies. MRI combined with endoscopy was the most utilized means to select patients for the watch-and-wait management despite a lack of strong evidence to guide and support a multi-test approach. Conclusion: This systematic review and meta-analysis provide an evidence-based practical guide for MRI assessment of complete tumor response after CRT for rectal cancer.

CT-Based Radiomics Signature for Preoperative Prediction of Coagulative Necrosis in Clear Cell Renal Cell Carcinoma

  • Kai Xu;Lin Liu;Wenhui Li;Xiaoqing Sun;Tongxu Shen;Feng Pan;Yuqing Jiang;Yan Guo;Lei Ding;Mengchao Zhang
    • Korean Journal of Radiology
    • /
    • v.21 no.6
    • /
    • pp.670-683
    • /
    • 2020
  • Objective: The presence of coagulative necrosis (CN) in clear cell renal cell carcinoma (ccRCC) indicates a poor prognosis, while the absence of CN indicates a good prognosis. The purpose of this study was to build and validate a radiomics signature based on preoperative CT imaging data to estimate CN status in ccRCC. Materials and Methods: Altogether, 105 patients with pathologically confirmed ccRCC were retrospectively enrolled in this study and then divided into training (n = 72) and validation (n = 33) sets. Thereafter, 385 radiomics features were extracted from the three-dimensional volumes of interest of each tumor, and 10 traditional features were assessed by two experienced radiologists using triple-phase CT-enhanced images. A multivariate logistic regression algorithm was used to build the radiomics score and traditional predictors in the training set, and their performance was assessed and then tested in the validation set. The radiomics signature to distinguish CN status was then developed by incorporating the radiomics score and the selected traditional predictors. The receiver operating characteristic (ROC) curve was plotted to evaluate the predictive performance. Results: The area under the ROC curve (AUC) of the radiomics score, which consisted of 7 radiomics features, was 0.855 in the training set and 0.885 in the validation set. The AUC of the traditional predictor, which consisted of 2 traditional features, was 0.843 in the training set and 0.858 in the validation set. The radiomics signature showed the best performance with an AUC of 0.942 in the training set, which was then confirmed with an AUC of 0.969 in the validation set. Conclusion: The CT-based radiomics signature that incorporated radiomics and traditional features has the potential to be used as a non-invasive tool for preoperative prediction of CN in ccRCC.

Seasonal Variation of Thermal Effluents Dispersion from Kori Nuclear Power Plant Derived from Satellite Data (위성영상을 이용한 고리원자력발전소 온배수 확산의 계절변동)

  • Ahn, Ji-Suk;Kim, Sang-Woo;Park, Myung-Hee;Hwang, Jae-Dong;Lim, Jin-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.52-68
    • /
    • 2014
  • In this study, we investigated the seasonal variation of SST(Sea Surface Temperature) and thermal effluents estimated by using Landsat-7 ETM+ around the Kori Nuclear Power Plant for 10 years(2000~2010). Also, we analyzed the direction and range of thermal effluents dispersion by the tidal current and tide. The results are as follows, First, we figured out the algorithm to estimate SST through the linear regression analysis of Landsat DN(Digital Number) and NOAA SST. And then, the SST was verified by compared with the in situ measurement and NOAA SST. The determination coefficient is 0.97 and root mean square error is $1.05{\sim}1.24^{\circ}C$. Second, the SST distribution of Landsat-7 estimated by linear regression equation showed $12{\sim}13^{\circ}C$ in winter, $13{\sim}19^{\circ}C$ in spring, and $24{\sim}29^{\circ}C$ and $16{\sim}24^{\circ}C$ in summer and fall. The difference of between SST and thermal effluents temperature is $6{\sim}8^{\circ}C$ except for the summer season. The difference of SST is up to $2^{\circ}C$ in August. There is hardly any dispersion of thermal effluents in August. When it comes to the spread range of thermal effluents, the rise range of more than $1^{\circ}C$ in the sea surface temperature showed up to 7.56km from east to west and 8.43km from north to south. The maximum spread area was $11.65km^2$. It is expected that the findings of this study will be used as the foundational data for marine environment monitoring on the area around the nuclear power plant.

An Integrated Model based on Genetic Algorithms for Implementing Cost-Effective Intelligent Intrusion Detection Systems (비용효율적 지능형 침입탐지시스템 구현을 위한 유전자 알고리즘 기반 통합 모형)

  • Lee, Hyeon-Uk;Kim, Ji-Hun;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.125-141
    • /
    • 2012
  • These days, the malicious attacks and hacks on the networked systems are dramatically increasing, and the patterns of them are changing rapidly. Consequently, it becomes more important to appropriately handle these malicious attacks and hacks, and there exist sufficient interests and demand in effective network security systems just like intrusion detection systems. Intrusion detection systems are the network security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. Conventional intrusion detection systems have generally been designed using the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. However, they cannot handle new or unknown patterns of the network attacks, although they perform very well under the normal situation. As a result, recent studies on intrusion detection systems use artificial intelligence techniques, which can proactively respond to the unknown threats. For a long time, researchers have adopted and tested various kinds of artificial intelligence techniques such as artificial neural networks, decision trees, and support vector machines to detect intrusions on the network. However, most of them have just applied these techniques singularly, even though combining the techniques may lead to better detection. With this reason, we propose a new integrated model for intrusion detection. Our model is designed to combine prediction results of four different binary classification models-logistic regression (LOGIT), decision trees (DT), artificial neural networks (ANN), and support vector machines (SVM), which may be complementary to each other. As a tool for finding optimal combining weights, genetic algorithms (GA) are used. Our proposed model is designed to be built in two steps. At the first step, the optimal integration model whose prediction error (i.e. erroneous classification rate) is the least is generated. After that, in the second step, it explores the optimal classification threshold for determining intrusions, which minimizes the total misclassification cost. To calculate the total misclassification cost of intrusion detection system, we need to understand its asymmetric error cost scheme. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, total misclassification cost is more affected by FNE rather than FPE. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 10,000 samples from them by using random sampling method. Also, we compared the results from our model with the results from single techniques to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell R4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on GA outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that the proposed model outperformed all the other comparative models in the total misclassification cost perspective. Consequently, it is expected that our study may contribute to build cost-effective intelligent intrusion detection systems.

Estimation of Ground-level PM10 and PM2.5 Concentrations Using Boosting-based Machine Learning from Satellite and Numerical Weather Prediction Data (부스팅 기반 기계학습기법을 이용한 지상 미세먼지 농도 산출)

  • Park, Seohui;Kim, Miae;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.321-335
    • /
    • 2021
  • Particulate matter (PM10 and PM2.5 with a diameter less than 10 and 2.5 ㎛, respectively) can be absorbed by the human body and adversely affect human health. Although most of the PM monitoring are based on ground-based observations, they are limited to point-based measurement sites, which leads to uncertainty in PM estimation for regions without observation sites. It is possible to overcome their spatial limitation by using satellite data. In this study, we developed machine learning-based retrieval algorithm for ground-level PM10 and PM2.5 concentrations using aerosol parameters from Geostationary Ocean Color Imager (GOCI) satellite and various meteorological parameters from a numerical weather prediction model during January to December of 2019. Gradient Boosted Regression Trees (GBRT) and Light Gradient Boosting Machine (LightGBM) were used to estimate PM concentrations. The model performances were examined for two types of feature sets-all input parameters (Feature set 1) and a subset of input parameters without meteorological and land-cover parameters (Feature set 2). Both models showed higher accuracy (about 10 % higher in R2) by using the Feature set 1 than the Feature set 2. The GBRT model using Feature set 1 was chosen as the final model for further analysis(PM10: R2 = 0.82, nRMSE = 34.9 %, PM2.5: R2 = 0.75, nRMSE = 35.6 %). The spatial distribution of the seasonal and annual-averaged PM concentrations was similar with in-situ observations, except for the northeastern part of China with bright surface reflectance. Their spatial distribution and seasonal changes were well matched with in-situ measurements.

LI-RADS Treatment Response versus Modified RECIST for Diagnosing Viable Hepatocellular Carcinoma after Locoregional Therapy: A Systematic Review and Meta-Analysis of Comparative Studies (국소 치료 후 잔존 간세포암의 진단을 위한 LI-RADS 치료 반응 알고리즘과 Modified RECIST 기준 간 비교: 비교 연구를 대상으로 한 체계적 문헌고찰과 메타분석)

  • Dong Hwan Kim;Bohyun Kim;Joon-Il Choi;Soon Nam Oh;Sung Eun Rha
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.2
    • /
    • pp.331-343
    • /
    • 2022
  • Purpose To systematically compare the performance of liver imaging reporting and data system treatment response (LR-TR) with the modified Response Evaluation Criteria in Solid Tumors (mRECIST) for diagnosing viable hepatocellular carcinoma (HCC) treated with locoregional therapy (LRT). Materials and Methods Original studies of intra-individual comparisons between the diagnostic performance of LR-TR and mRECIST using dynamic contrast-enhanced CT or MRI were searched in MEDLINE and EMBASE, up to August 25, 2021. The reference standard for tumor viability was surgical pathology. The meta-analytic pooled sensitivity and specificity of the viable category using each criterion were calculated using a bivariate random-effects model and compared using bivariate meta-regression. Results For five eligible studies (430 patients with 631 treated observations), the pooled per-lesion sensitivities and specificities were 58% (95% confidence interval [CI], 45%-70%) and 93% (95% CI, 88%-96%) for the LR-TR viable category and 56% (95% CI, 42%-69%) and 86% (95% CI, 72%-94%) for the mRECIST viable category, respectively. The LR-TR viable category provided significantly higher pooled specificity (p < 0.01) than the mRECIST but comparable pooled sensitivity (p = 0.53). Conclusion The LR-TR algorithm demonstrated better specificity than mRECIST, without a significant difference in sensitivity for the diagnosis of pathologically viable HCC after LRT.

The Adaptive Personalization Method According to Users Purchasing Index : Application to Beverage Purchasing Predictions (고객별 구매빈도에 동적으로 적응하는 개인화 시스템 : 음료수 구매 예측에의 적용)

  • Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.95-108
    • /
    • 2011
  • TThis is a study of the personalization method that intelligently adapts the level of clustering considering purchasing index of a customer. In the e-biz era, many companies gather customers' demographic and transactional information such as age, gender, purchasing date and product category. They use this information to predict customer's preferences or purchasing patterns so that they can provide more customized services to their customers. The previous Customer-Segmentation method provides customized services for each customer group. This method clusters a whole customer set into different groups based on their similarity and builds predictive models for the resulting groups. Thus, it can manage the number of predictive models and also provide more data for the customers who do not have enough data to build a good predictive model by using the data of other similar customers. However, this method often fails to provide highly personalized services to each customer, which is especially important to VIP customers. Furthermore, it clusters the customers who already have a considerable amount of data as well as the customers who only have small amount of data, which causes to increase computational cost unnecessarily without significant performance improvement. The other conventional method called 1-to-1 method provides more customized services than the Customer-Segmentation method for each individual customer since the predictive model are built using only the data for the individual customer. This method not only provides highly personalized services but also builds a relatively simple and less costly model that satisfies with each customer. However, the 1-to-1 method has a limitation that it does not produce a good predictive model when a customer has only a few numbers of data. In other words, if a customer has insufficient number of transactional data then the performance rate of this method deteriorate. In order to overcome the limitations of these two conventional methods, we suggested the new method called Intelligent Customer Segmentation method that provides adaptive personalized services according to the customer's purchasing index. The suggested method clusters customers according to their purchasing index, so that the prediction for the less purchasing customers are based on the data in more intensively clustered groups, and for the VIP customers, who already have a considerable amount of data, clustered to a much lesser extent or not clustered at all. The main idea of this method is that applying clustering technique when the number of transactional data of the target customer is less than the predefined criterion data size. In order to find this criterion number, we suggest the algorithm called sliding window correlation analysis in this study. The algorithm purposes to find the transactional data size that the performance of the 1-to-1 method is radically decreased due to the data sparity. After finding this criterion data size, we apply the conventional 1-to-1 method for the customers who have more data than the criterion and apply clustering technique who have less than this amount until they can use at least the predefined criterion amount of data for model building processes. We apply the two conventional methods and the newly suggested method to Neilsen's beverage purchasing data to predict the purchasing amounts of the customers and the purchasing categories. We use two data mining techniques (Support Vector Machine and Linear Regression) and two types of performance measures (MAE and RMSE) in order to predict two dependent variables as aforementioned. The results show that the suggested Intelligent Customer Segmentation method can outperform the conventional 1-to-1 method in many cases and produces the same level of performances compare with the Customer-Segmentation method spending much less computational cost.

Validation of Extreme Rainfall Estimation in an Urban Area derived from Satellite Data : A Case Study on the Heavy Rainfall Event in July, 2011 (위성 자료를 이용한 도시지역 극치강우 모니터링: 2011년 7월 집중호우를 중심으로)

  • Yoon, Sun-Kwon;Park, Kyung-Won;Kim, Jong Pil;Jung, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.371-384
    • /
    • 2014
  • This study developed a new algorithm of extreme rainfall extraction based on the Communication, Ocean and Meteorological Satellite (COMS) and the Tropical Rainfall Measurement Mission (TRMM) Satellite image data and evaluated its applicability for the heavy rainfall event in July-2011 in Seoul, South Korea. The power-series-regression-based Z-R relationship was employed for taking into account for empirical relationships between TRMM/PR, TRMM/VIRS, COMS, and Automatic Weather System(AWS) at each elevation. The estimated Z-R relationship ($Z=303R^{0.72}$) agreed well with observation from AWS (correlation coefficient=0.57). The estimated 10-minute rainfall intensities from the COMS satellite using the Z-R relationship generated underestimated rainfall intensities. For a small rainfall event the Z-R relationship tended to overestimated rainfall intensities. However, the overall patterns of estimated rainfall were very comparable with the observed data. The correlation coefficients and the Root Mean Square Error (RMSE) of 10-minute rainfall series from COMS and AWS gave 0.517, and 3.146, respectively. In addition, the averaged error value of the spatial correlation matrix ranged from -0.530 to -0.228, indicating negative correlation. To reduce the error by extreme rainfall estimation using satellite datasets it is required to take into more extreme factors and improve the algorithm through further study. This study showed the potential utility of multi-geostationary satellite data for building up sub-daily rainfall and establishing the real-time flood alert system in ungauged watersheds.

Development of Control Algorithm for Greenhouse Cooling Using Two-fluid Fogging System (이류체 포그 냉방시스템의 제어알고리즘 개발)

  • Nam, Sang-Woon;Kim, Young-Shik;Sung, In-Mo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.138-145
    • /
    • 2013
  • In order to develop the efficient control algorithm of the two-fluid fogging system, cooling experiments for the many different types of fogging cycles were conducted in tomato greenhouses. It showed that the cooling effect was 1.2 to $4.0^{\circ}C$ and the cooling efficiency was 8.2 to 32.9% on average. The cooling efficiency with fogging interval was highest in the case of the fogging cycle of 90 seconds. The cooling efficiency showed a tendency to increase as the fogging time increased and the stopping time decreased. As the spray rate of fog in the two-fluid fogging system increased, there was a tendency for the cooling efficiency to improve. However, as the inside air approaches its saturation level, even though the spray rate of fog increases, it does not lead to further evaporation. Thus, it can be inferred that increasing the spray rate of fog before the inside air reaches the saturation level could make higher the cooling efficiency. As cooling efficiency increases, the saturation deficit of inside air decreased and the difference between absolute humidity of inside and outside air increased. The more fog evaporated, the difference between absolute humidity of inside and outside air tended to increase and as the result, the discharge of vapor due to ventilation occurs more easily, which again lead to an increase in the evaporation rate and ultimately increase in the cooling efficiency. Regression analysis result on the saturation deficit of inside air showed that the fogging time needed to change of saturation deficit of $10g{\cdot}kg^{-1}$ was 120 seconds and stopping time was 60 seconds. But in order to decrease the amplitude of temperature and to increase the cooling efficiency, the fluctuation range of saturation deficit was set to $5g{\cdot}kg^{-1}$ and we decided that the fogging-stopping time of 60-30 seconds was more appropriate. Control types of two-fluid fogging systems were classified as computer control or simple control, and their control algorithms were derived. We recommend that if the two-fluid fogging system is controlled by manipulating only the set point of temperature, humidity, and on-off time, it would be best to set up the on-off time at 60-30 seconds in time control, the lower limit of air temperature at 30 to $32^{\circ}C$ and the upper limit of relative humidity at 85 to 90%.

Quantitative Rainfall Estimation for S-band Dual Polarization Radar using Distributed Specific Differential Phase (분포형 비차등위상차를 이용한 S-밴드 이중편파레이더의 정량적 강우 추정)

  • Lee, Keon-Haeng;Lim, Sanghun;Jang, Bong-Joo;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.57-67
    • /
    • 2015
  • One of main benefits of a dual polarization radar is improvement of quantitative rainfall estimation. In this paper, performance of two representative rainfall estimation methods for a dual polarization radar, JPOLE and CSU algorithms, have been compared by using data from a MOLIT S-band dual polarization radar. In addition, this paper presents evaluation of specific differential phase ($K_{dp}$) retrieval algorithm proposed by Lim et al. (2013). Current $K_{dp}$ retrieval methods are based on range filtering technique or regression analysis. However, these methods can result in underestimating peak $K_{dp}$ or negative values in convective regions, and fluctuated $K_{dp}$ in low rain rate regions. To resolve these problems, this study applied the $K_{dp}$ distribution method suggested by Lim et al. (2013) and evaluated by adopting new $K_{dp}$ to JPOLE and CSU algorithms. Data were obtained from the Mt. Biseul radar of MOLIT for two rainfall events in 2012. Results of evaluation showed improvement of the peak $K_{dp}$ and did not show fluctuation and negative $K_{dp}$ values. Also, in heavy rain (daily rainfall > 80 mm), accumulated daily rainfall using new $K_{dp}$ was closer to AWS observation data than that using legacy $K_{dp}$, but in light rain(daily rainfall < 80mm), improvement was insignificant, because $K_{dp}$ is used mostly in case of heavy rain rate of quantitative rainfall estimation algorithm.