Park, Minsu;Park, Minjeong;Kim, Donghoh;Lee, Hajeong;Oh, Hee-Seok
Communications for Statistical Applications and Methods
/
제28권6호
/
pp.583-594
/
2021
In this paper, we propose wavelet-based procedures to identify the difference between images, including portraits and handwriting. The proposed methods are based on a novel combination of multiscale methods with a regularization technique. The multiscale method extracts the local characteristics of an image, and the distinct features are obtained through the regularized regression of the local characteristics. The regularized regression approach copes with the high-dimensional problem to build the relation between the local characteristics. Lytle and Yang (2006) introduced the detection method of forged handwriting via wavelets and summary statistics. We expand the scope of their method to the general image and significantly improve the results. We demonstrate the promising empirical evidence of the proposed method through various experiments.
The method of generalized estimating equations (GEE) has become very popular for the analysis of longitudinal data. We extend this work to the use of M-estimators; the resultant regression estimates are robust to heavy tailed errors and to outliers. The proposed method does not require correct specification of the dependence structure between observation, and allows for heterogeneity of the error. However, an estimate of the dependence structure may be incorporated, and if it is correct this guarantees a higher efficiency for the regression estimators. A goodness-of-fit test for checking the adequacy of the assumed M-estimation regression model is also provided. Simulation studies are conducted to show the finite-sample performance of the new methods. The proposed methods are applied to a real-life data set.
Communications for Statistical Applications and Methods
/
제19권6호
/
pp.885-898
/
2012
In this paper, we consider Bayesian approaches to partially linear models, in which a regression function is represented by a semiparametric additive form of a parametric linear regression function and a nonparametric regression function. We make a comparative study on the performance of widely used Bayesian partially linear models in terms of empirical analysis. Specifically, we deal with three Bayesian methods to estimate the nonparametric regression function, one method using Fourier series representation, the other method based on Gaussian process regression approach, and the third method based on the smoothness of the function and differencing. We compare the numerical performance of three methods by the root mean squared error(RMSE). For empirical analysis, we consider synthetic data with simulation studies and real data application by fitting each of them with three Bayesian methods and comparing the RMSEs.
Communications for Statistical Applications and Methods
/
제31권1호
/
pp.155-178
/
2024
Regression discontinuity (RD) design is one of the most widely used methods in causal inference for estimation of treatment effect when the treatment is created by a cutpoint from the covariate of interest. There has been little attention to RD design, although it provides a very useful tool for analysis of treatment effect for censored data. In this paper, we define the causal effect for survival function in RD design when the treatment is assigned deterministically by the covariate of interest. We propose estimators of this causal effect for survival data by using transformation, which leads unbiased estimator of the survival function with local linear regression. Simulation studies show the validity of our approach. We also illustrate our proposed method using the prostate, lung, colorectal and ovarian (PLCO) dataset.
우리는 회귀분석에서 설명변수들 중 일부가 질적 변수인 경우 지시변수를 사용한다. 또한 공분산분석모형에서는 관심인자의 효과에 대한 유의성 검정시 연속변수인 공변수로 주어지는 방해인자를 미리 회귀분석으로 제거한다. 지시변수 사용 회귀모형이나 공분산분석모형을 위한 확증적 자료분석 전에 탐색적 자료분석의 한 수단으로서 자료깊이에 근거한 DD-plot을 이용하면 집단 간의 차이를 쉽게 알아볼 수 있다. 이 방법은 오차항의 통계모형을 가정하지 않으므로 유용한 탐색적 방법이 될 수 있다. 몇 가지 사례들을 통하여 DD-plot이 지시변수 사용 회귀모형이나 공분산분석모형을 위한 그래픽 탐색적 자료분석방법으로서 유용함을 보였다.
The multicollinearity problem in a multiple linear regression model may present deleterious effects on predictions. Thus, its is desirable to consider the optimal fractions with respect to the unbiased estimate of the mean squares errors of the predicted values. Interstingly, the optimal fractions can be also illuminated by the Bayesian inerpretation of the general James-Stein estimators.
백악기 경상계 안산암과 불국사 화강암류가 주로 분포하는 지반에서 시공된 터널의 내공변위 계측자료를 분석하였다. 터널 주변 암반을 RMR법에 의한 다섯 가지 암반등급으로 구분하고 각 등급에 포함된 계측자료들을 통계처리하여 암반등급별 내공변위의 회귀분석을 실시하였다. 연구 결과. 로그함수보다는 지수함수의 상관계수 가 더 크며, 연약한 암반등급일수록 내공변위의 크기와 표준편차가 크게 나타났다. 또한, 최종내공변위에 대한 최대변위속도 및 초기내공변위의 관계를 도출하였으며, 이 중에서 최종내공변위와 최대변위속도의 상관계수는 0.87로 나타나 이들은 비교적 높은 상관성을 가지는 것으로 확인되었다
Communications for Statistical Applications and Methods
/
제25권5호
/
pp.489-499
/
2018
Jeonse is a unique property rental system in Korea in which a tenant pays a part of the price of a leased property as a fixed amount security deposit and gets back the entire deposit when the tenant moves out at the end of the tenancy. Jeonse deposit is very important in the Korean real estate market since it is directly related to the residential property sales price and it is a key indicator to predict future real estate market trend. Jeonse deposit data shows a skewed and heteroscedastic distribution and the commonly used mean regression model may be inappropriate for the analysis of Jeonse deposit data. In this paper, we apply a Bayesian quantile regression model to analyze Jeonse deposit data, which is non-parametric and does not require any distributional assumptions. Analysis results show that the quantile regression coefficients of most explanatory variables change dramatically for different quantiles. The regression coefficients of some variables have different signs for different quantiles, implying that even the same variable may affect the Jeonse deposit in the opposite direction depending on the amount of deposit.
Evaporation from surface water bodies is influenced by a number of meteorological parameters. The rate of evaporation is primarily controlled by incoming solar radiation, air and water temperature and wind speed and relative humidity. In the present study, influence of weekly meteorological variables such as air temperature, relative humidity, bright sunshine hours, wind speed, wind velocity, rainfall on rate of evaporation has been examined using 35 years(1971-2005) of meteorological data. Statistical analysis was carried out employing linear regression models. The developed regression models were tested for goodness of fit, multicollinearity along with normality test and constant variance test. These regression models were subsequently validated using the observed and predicted parameter estimates with the meteorological data of the year 2005. Further these models were checked with time order sequence of residual plots to identify the trend of the scatter plot and then new standardized regression models were developed using standardized equations. The highest significant positive correlation was observed between pan evaporation and maximum air temperature. Mean air temperature and wind velocity have highly significant influence on pan evaporation whereas minimum air temperature, relative humidity and wind direction have no such significant influence.
In the analysis of repeated measurements, multivariate regression models that account for the correlations among the observations from the same subject are widely used. Like the usual univariate regression models, these multivariate regression models also need some model diagnostic procedures. In this paper, we propose a simple graphical method to detect outliers and to investigate the goodness of model fit in repeated measures data. The graphical method is based on the quantile-quantile(Q-Q) plots of the $X^2$ distribution and the standard normal distribution. We also propose diagnostic measures to detect influential observations. The proposed method is illustrated using two examples.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.