• Title/Summary/Keyword: Regression Point Displacement

Search Result 11, Processing Time 0.024 seconds

Multivariate adaptive regression splines model for reliability assessment of serviceability limit state of twin caverns

  • Zhang, Wengang;Goh, Anthony T.C.
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.431-458
    • /
    • 2014
  • Construction of a new cavern close to an existing cavern will result in a modification of the state of stresses in a zone around the existing cavern as interaction between the twin caverns takes place. Extensive plane strain finite difference analyses were carried out to examine the deformations induced by excavation of underground twin caverns. From the numerical results, a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) has been used to relate the maximum key point displacement and the percent strain to various parameters including the rock quality, the cavern geometry and the in situ stress. Probabilistic assessments on the serviceability limit state of twin caverns can be performed using the First-order reliability spreadsheet method (FORM) based on the built MARS model. Parametric studies indicate that the probability of failure $P_f$ increases as the coefficient of variation of Q increases, and $P_f$ decreases with the widening of the pillar.

Research Design to Evaluate an Academic Library's Orientation Program Applying Mobile Augmented Reality

  • Kang, Ji Hei
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.49 no.2
    • /
    • pp.215-233
    • /
    • 2015
  • Despite the continuous efforts of academic libraries to develop various user-centered outreach programs, services and new processes, library anxiety still remains a threat to university students' full use of academic library resources. Meanwhile, a new generation of students, called the "Net Generation," has grown up with developed information and communication technology enter university and must be persuaded to turn to the library. To serve this new group of patrons better, libraries need to adopt new technologies. However, since an initial introduction cost and labor efforts are involved in the integration of the technology, identifying the right time for introduction and the right scope of innovation is essential but difficult. The study proposes a not-yet-well-known, novel experimental design, Regression Point Displacement (RPD), to evaluate an orientation program applying Mobile Augmented Reality (MAR) for STEM students. Since this RPD design requires only one treatment group, the model is expected to be the incomparable and rational way to evaluate the new MAR technology. In the context of an informal learning experience, the findings of the study will determine the effectiveness of an orientation employing the MAR technology.

Validation of three-dimensional digital model superimpositions based on palatal structures in patients with maximum anterior tooth retraction following premolar extraction

  • Liu, Jing;Koh, Kyong-Min;Choi, Sung-Hwan;Kim, Ji-Hoi;Cha, Jung-Yul
    • The korean journal of orthodontics
    • /
    • v.52 no.4
    • /
    • pp.258-267
    • /
    • 2022
  • Objective: This study aimed to evaluate the superimposition accuracy of digital modes for measuring tooth movement in patients requiring anterior retraction after premolar extraction based on the proposed reference regions. Methods: Forty patients treated with bilateral maxillary first premolar extraction were divided into two groups: moderate retraction (< 7.0 mm) and maximum retraction (≥ 7.0 mm). Central incisor displacement was measured using cephalometric superimpositions and three-dimensional (3D) digital superimpositions with the 3rd or 4th ruga as the reference point. The Wilcoxon signed-rank test and linear regression analyses were performed to test the significance of the differences and relationships between the two measurement techniques. Results: In the moderate retraction group, the central incisor anteroposterior displacement values did not differ significantly between 3D digital and cephalometric superimpositions. However, in the maximum-retraction group, significant differences were observed between the anteroposterior displacement evaluated by the 3rd ruga superimposition and cephalometric methods (p < 0.05). Conclusions: This study demonstrated that 3D digital superimpositions were clinically as reliable as cephalometric superimpositions in assessing tooth movements in patients requiring moderate retraction. However, the reference point should be carefully examined in patients who require maximum retraction.

Fast Simulation of Output Voltage for High-Shock Piezoresistive Microaccelerometer Using Mode Superposition Method and Least Square Method (모드중첩법 및 최소자승법을 통한 고충격 압저항 미소가속도계의 출력전압 해석)

  • Han, Jeong-Sam;Kwon, Ki-Beom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.777-787
    • /
    • 2012
  • The transient analysis for the output voltage of a piezoresistive microaccelerometer takes a relatively high computation time because at least two iterations are required to calculate the piezoresistive-structural coupled response at each time step. In this study, the high computational cost for calculating the transient output voltage is considerably reduced by an approach integrating the mode superposition method and the least square method. In the approach, data on static displacement and output voltage calculated by piezoresistive-structural coupled simulation for three acceleration inputs are used to develop a quadratic regression model, relating the output voltage to the displacement at a certain observation point. The transient output voltage is then approximated by a regression model using the displacement response cheaply calculated by the mode superposition method. A high-impact microaccelerometer subject to several types of acceleration inputs such as 100,000 G shock, sine, step, and square pulses are adopted as a numerical example to represent the efficiency and accuracy of the suggested approach.

An applied model for steel reinforced concrete columns

  • Lu, Xilin;Zhou, Ying
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.697-711
    • /
    • 2007
  • Though extensive research has been carried out for the ultimate strength of steel reinforced concrete (SRC) members under static and cyclic load, there was only limited information on the applied analysis models. Modeling of the inelastic response of SRC members can be accomplished by using a microcosmic model. However, generally used microcosmic model, which usually contains a group of parameters, is too complicated to apply in the nonlinear structural computation for large whole buildings. The intent of this paper is to develop an effective modeling approach for the reliable prediction of the inelastic response of SRC columns. Firstly, five SRC columns were tested under cyclic static load and constant axial force. Based on the experimental results, normalized trilinear skeleton curves were then put forward. Theoretical equation of normalizing point (ultimate strength point) was built up according to the load-bearing mechanism of RC columns and verified by the 5 specimens in this test and 14 SRC columns from parallel tests. Since no obvious strength deterioration and pinch effect were observed from the load-displacement curve, hysteresis rule considering only stiffness degradation was proposed through regression analysis. Compared with the experimental results, the applied analysis model is so reasonable to capture the overall cyclic response of SRC columns that it can be easily used in both static and dynamic analysis of the whole SRC structural systems.

Deformation and failure mechanism exploration of surrounding rock in huge underground cavern

  • Tian, Zhenhua;Liu, Jian;Wang, Xiaogang;Liu, Lipeng;Lv, Xiaobo;Zhang, Xiaotong
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.275-291
    • /
    • 2019
  • In a super-large underground with "large span and high side wall", it is buried in mountains with uneven lithology, complicated geostress field and developed geological structure. These surrounding rocks are more susceptible to stability issues during the construction period. This paper takes the left bank of Baihetan hydropower station (span is 34m) as a case study example, wherein the deformation mechanism of surrounding rock appears prominent. Through analysis of geological, geophysical, construction and monitoring data, the deformation characteristics and factors are concluded. The failure mechanism, spatial distribution characteristics, and evolution mechanism are also discussed, where rock mechanics theory, $FLAC^{3D}$ numerical simulation, rock creep theory, and the theory of center point are combined. In general, huge underground cavern stability issues has arisen with respect to huge-scale and adverse geological conditions since settling these issues will have milestone significance based on the evolutionary pattern of the surrounding rock and the correlation analyses, the rational structure of the factors, and the method of nonlinear regression modeling with regard to the construction and development of hydropower engineering projects among the worldwide.

Evaluation of Thermal Movements of a Cable-Stayed Bridge Using Temperatures and Displacements Data (온도와 변위 데이터를 이용한 사장교의 온도신축거동 평가)

  • Park, Jong Chil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.779-789
    • /
    • 2015
  • Because cable-supported bridges have long spans and large members, their movements and geometrical changes by temperatures tend to be bigger than those of small or medium-sized bridges. Therefore, it is important for maintenance engineers to monitor and assess the effect of temperature on the cable-supported bridges. To evaluate how much the superstructure expands or contracts when subjected to changes in temperature is the first step for the maintenance. Thermal movements of a cable-stayed bridge in service are evaluated by using long-term temperatures and displacements data. Displacements data are obtained from extensometers and newly installed GNSS (Global Navigation Satellite System) receivers on the bridge. Based on the statistical data such as air temperatures, each sensor's temperatures, average temperatures and effective temperatures, correlation analysis between temperatures and displacements has been performed. Average temperatures or effective temperatures are most suitable for the evaluation of thermal movements. From linear regression analysis between effective temperatures and displacements, the variation rate's of displacement to temperature have been calculated. From additional regression analysis between expansion length's and variation rate's of displacement to temperature, the thermal expansion coefficient and neutral point have been estimated. Comparing these parameters with theoretical and analytical results, a practical procedure for evaluating the real thermal behaviors of the cable-supported bridges is proposed.

Preoperative imaging of the inferior alveolar nerve canal by cone-beam computed tomography and 1-year neurosensory recovery following mandibular setback through bilateral sagittal split ramus osteotomy: a randomized clinical trial

  • Hassani, Ali;Rakhshan, Vahid;Hassani, Mohammad;Aghdam, Hamidreza Mahaseni
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • Objectives: One of the most common complications of bilateral sagittal split ramus osteotomy (BSSRO) is neurosensory impairment of the inferior alveolar nerve (IAN). Accurate preoperative determination of the position of the IAN canal within the mandible using cone-beam computed tomography (CBCT) is recommended to prevent IAN dysfunction during BSSRO and facilitate neurosensory improvement after BSSRO. Materials and Methods: This randomized clinical trial consisted of 86 surgical sites in 43 patients (30 females and 13 males), including 21 cases (42 sides) and 22 controls (44 sides). Panoramic and lateral cephalographs were obtained from all patients. In the experimental group, CBCT was also performed from both sides of the ramus and mandibular body. Neurosensory function of the IAN was subjectively assessed using a 5-point scale preoperatively and 7 days, 1 month, 3 months, 6 months, and 12 months post-surgery. Data were analyzed using Fisher's test, Spearman's test, t-test, linear mixed-model regression, and repeated-measures ANCOVA (α=0.05, 0.01). Results: Mean sensory scores in the control group were 1.57, 2.61, 3.34, 3.73, and 4.20 over one year and were 1.69, 3.00, 3.60, 4.19, and 4.48 in the CBCT group. Significant effects were detected for CBCT intervention (P=0.002) and jaw side (P=0.003) but not for age (P=0.617) or displacement extent (P=0.122). Conclusion: Preoperative use of CBCT may help surgeons to practice more conservative surgery. Neurosensory deficits might heal faster on the right side.

Damage at the Peach Due to Vibrational Stress During Transportation Simulation Test (모의수송 중 진동피로에 의한 복숭아의 손상)

  • Choi, Seung-Ryul;Lee, Young-Hee;Choi, Dong-Soo;Kim, Man-Soo
    • Journal of Biosystems Engineering
    • /
    • v.35 no.3
    • /
    • pp.182-188
    • /
    • 2010
  • Post-Harvest processing engineering is a field that studies prevention of the quality change of agricultural products during sorting, packaging, storage, and distribution after harvested. In distribution steps, agricultural products could be damaged by physical force, it is the main reason of low quality and they lost value of commodities. This study was performed to find the vibration characteristics of the peach, and to find the extent of the damage on the peach by fatigue stress. The vibration data was obtained on expressway and the vibration characteristics of peach was used to find the damage on the peach. To analyze the vibration characteristics of peach, the resonance frequency and vibration transmissibility were measured. The resonance frequency of the peach was 167.98 Hz and the transmissibility was 4.06 at resonance point. It was 150 ~ 250 Hz that the transmissibility was more than 1. And the transmissibility in simulated test was measured. When the trasmissibility was more than 1, the range was 15 ~ 65 Hz, and when it was less than 1, the range was 65 ~ 175 Hz. When the transmissibility was about 1, the range was 5 ~ 15 Hz. The damage and the vibration cycle numbers of peaches were compared with input frequency and acceleration. More damage and less cycle number happened in 30 Hz than in 62.5 Hz. The reason was that the transmissibility of 30 Hz was higher and the vibration displacement in lower frequency was more. The more acceleration and cycle number increased, the more the bruising volume of peaches increased. The bruising volume ratio for vibration fatigue was measured according to input acceleration and cycle number. Using measured data, regression models for bruising volume ratio(BVR) was developed as a function of the acceleration(A) and cycle number(CN) as follows. BVR = a * $A^b*$ $(CN)^c$

Basic Physiological Research on the Wing Flapping of the Sweet Potato Hawkmoth Using Multimedia

  • Nakajima, Isao;Yagi, Yukako
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.189-196
    • /
    • 2020
  • We have developed a device for recording biological data by inserting three electrodes and a needle with an angular velocity sensor into the moth for the purpose of measuring the electromyogram of the flapping and the corresponding lift force. With this measurement, it is possible to evaluate the moth-physiological function of moths, and the amount of pesticides that insects are exposed to (currently LD50-based standards), especially the amount of chronic low-concentration exposure, can be reduced the dose. We measured and recorded 2-channel electromyography (EMG) and angular velocity corresponding to pitch angle (pitch-like angle) associated with wing flapping for 100 sweet potato hawkmoths (50 females and 50 males) with the animals suspended and constrained in air. Overall, the angular velocity and amplitude of EMG signals demonstrated high correlation, with a correlation coefficient of R = 0.792. In contrast, the results of analysis performed on the peak-to-peak (PP) EMG intervals, which correspond to the RR intervals of ECG signals, indicated a correlation between ΔF fluctuation and angular velocity of R = 0.379. Thus, the accuracy of the regression curve was relatively poor. Using a DC amplification circuit without capacitive coupling as the EMG amplification circuit, we confirmed that the baseline changes at the gear change point of wing flapping. The following formula gives the lift provided by the wing: angular velocity × thoracic weight - air resistance - (eddy resistance due to turbulence). In future studies, we plan to attach a micro radio transmitter to the moths to gather data on potential energy, kinetic energy, and displacement during free flight for analysis. Such physiological functional evaluations of moths may alleviate damage to insect health due to repeated exposure to multiple agrochemicals and may lead to significant changes in the toxicity standards, which are currently based on LD50 values.