• 제목/요약/키워드: Regression Model Function

검색결과 840건 처리시간 0.022초

Estimation of Interval Censored Regression Spline Model with Variance Function

  • Joo, Yong-Sung;Lee, Keun-Baik;Jung, Hyeng-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권4호
    • /
    • pp.1247-1253
    • /
    • 2008
  • In this paper, we propose a interval censored regression spline model with a variance function (non-constant variance that depends on a predictor). Simulation studies show our estimates from MCECM algorithm are consistent, but biased when the sample size is small because of boundary effects. Also, we examined how the distribution of $x_i$ affects the converging speed of these consistent estimates.

  • PDF

Fuzzy c-Regression Using Weighted LS-SVM

  • Hwang, Chang-Ha
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 추계학술대회
    • /
    • pp.161-169
    • /
    • 2005
  • In this paper we propose a fuzzy c-regression model based on weighted least squares support vector machine(LS-SVM), which can be used to detect outliers in the switching regression model while preserving simultaneous yielding the estimates of outputs together with a fuzzy c-partitions of data. It can be applied to the nonlinear regression which does not have an explicit form of the regression function. We illustrate the new algorithm with examples which indicate how it can be used to detect outliers and fit the mixed data to the nonlinear regression models.

  • PDF

입방형 영역에서의 G-효율이 높은 Model-Robust 실험설계 (Model-Robust G-Efficient Cuboidal Experimental Designs)

  • 박유진;이윤주
    • 산업공학
    • /
    • 제23권2호
    • /
    • pp.118-125
    • /
    • 2010
  • The determination of a regression model is important in using statistical designs of experiments. Generally, the exact regression model is not known, and experimenters suppose that a certain model form will be fit. Then an experimental design suitable for that predetermined model form is selected and the experiment is conducted. However, the initially chosen regression model may not be correct, and this can result in undesirable statistical properties. We develop model-robust experimental designs that have stable prediction variance for a family of candidate regression models over a cuboidal region by using genetic algorithms and the desirability function method. We then compare the stability of prediction variance of model-robust experimental designs with those of the 3-level face centered cube. These model-robust experimental designs have moderately high G-efficiencies for all candidate models that the experimenter may potentially wish to fit, and outperform the cuboidal design for the second-order model. The G-efficiencies are provided for the model-robust experimental designs and the face centered cube.

Separate Fuzzy Regression with Crisp Input and Fuzzy Output

  • Yoon, Jin-Hee;Choi, Seung-Hoe
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권2호
    • /
    • pp.301-314
    • /
    • 2007
  • The aim of this paper is to deal with a method to construct a separate fuzzy regression model with crisp input and fuzzy output data using a best response function for the center and the width of the predicted output. Also we introduce the crisp mean and variance of the predicted fuzzy value and also give some examples to compare a performance of the proposed fuzzy model with various other fuzzy regression model.

  • PDF

가변계수 측정오차 회귀모형 (Varying coefficient model with errors in variables)

  • 손인석;심주용
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권5호
    • /
    • pp.971-980
    • /
    • 2017
  • 가변계수 회귀모형은 회귀계수의 동적변화를 모형화함으로써 종속변수와 입력변수의 관계에 대한 쉬운 해석이 가능하고 회귀계수의 변동성도 추정할 수 있는 장점을 지니고 있으므로, 여러 과학 분야에서 많은 주목을 받고 있다. 본 논문에서 입력변수와 출력변수의 오차를 효과적으로 고려한 가변계수 오차모형을 제안한다. 가변계수가 평활변수의 알려지지 않은 형태의 비선형함수이므로 이를 추정하기 위하여 커널 방법을 사용한다. 제안된 모형의 성능에 영향을 미치는 초모수의 최적값을 구하기 위하여 일반화 교차타당성 방법 또한 제안한다. 제안된 방법은 모의자료와 실제자료를 이용한 수치적 연구를 통하여 평가된다.

A Climate Prediction Method Based on EMD and Ensemble Prediction Technique

  • Bi, Shuoben;Bi, Shengjie;Chen, Xuan;Ji, Han;Lu, Ying
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • 제54권4호
    • /
    • pp.611-622
    • /
    • 2018
  • Observed climate data are processed under the assumption that their time series are stationary, as in multi-step temperature and precipitation prediction, which usually leads to low prediction accuracy. If a climate system model is based on a single prediction model, the prediction results contain significant uncertainty. In order to overcome this drawback, this study uses a method that integrates ensemble prediction and a stepwise regression model based on a mean-valued generation function. In addition, it utilizes empirical mode decomposition (EMD), which is a new method of handling time series. First, a non-stationary time series is decomposed into a series of intrinsic mode functions (IMFs), which are stationary and multi-scale. Then, a different prediction model is constructed for each component of the IMF using numerical ensemble prediction combined with stepwise regression analysis. Finally, the results are fit to a linear regression model, and a short-term climate prediction system is established using the Visual Studio development platform. The model is validated using temperature data from February 1957 to 2005 from 88 weather stations in Guangxi, China. The results show that compared to single-model prediction methods, the EMD and ensemble prediction model is more effective for forecasting climate change and abrupt climate shifts when using historical data for multi-step prediction.

ASYMPTOTIC NORMALITY OF WAVELET ESTIMATOR OF REGRESSION FUNCTION UNDER NA ASSUMPTIONS

  • Liang, Han-Ying;Qi, Yan-Yan
    • 대한수학회보
    • /
    • 제44권2호
    • /
    • pp.247-257
    • /
    • 2007
  • Consider the heteroscedastic regression model $Y_i=g(x_i)+{\sigma}_i\;{\epsilon}_i=(1{\leq}i{\leq}n)$, where ${\sigma}^2_i=f(u_i)$, the design points $(x_i,\;u_i)$ are known and nonrandom, and g and f are unknown functions defined on closed interval [0, 1]. Under the random errors $\epsilon_i$ form a sequence of NA random variables, we study the asymptotic normality of wavelet estimators of g when f is a known or unknown function.

Kernel method for autoregressive data

  • Shim, Joo-Yong;Lee, Jang-Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.949-954
    • /
    • 2009
  • The autoregressive process is applied in this paper to kernel regression in order to infer nonlinear models for predicting responses. We propose a kernel method for the autoregressive data which estimates the mean function by kernel machines. We also present the model selection method which employs the cross validation techniques for choosing the hyper-parameters which affect the performance of kernel regression. Artificial and real examples are provided to indicate the usefulness of the proposed method for the estimation of mean function in the presence of autocorrelation between data.

  • PDF

Regression analysis of interval censored competing risk data using a pseudo-value approach

  • Kim, Sooyeon;Kim, Yang-Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제23권6호
    • /
    • pp.555-562
    • /
    • 2016
  • Interval censored data often occur in an observational study where the subject is followed periodically. Instead of observing an exact failure time, two inspection times that include it are available. There are several methods to analyze interval censored failure time data (Sun, 2006). However, in the presence of competing risks, few methods have been suggested to estimate covariate effect on interval censored competing risk data. A sub-distribution hazard model is a commonly used regression model because it has one-to-one correspondence with a cumulative incidence function. Alternatively, Klein and Andersen (2005) proposed a pseudo-value approach that directly uses the cumulative incidence function. In this paper, we consider an extension of the pseudo-value approach into the interval censored data to estimate regression coefficients. The pseudo-values generated from the estimated cumulative incidence function then become response variables in a generalized estimating equation. Simulation studies show that the suggested method performs well in several situations and an HIV-AIDS cohort study is analyzed as a real data example.

An estimator of the mean of the squared functions for a nonparametric regression

  • Park, Chun-Gun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권3호
    • /
    • pp.577-585
    • /
    • 2009
  • So far in a nonparametric regression model one of the interesting problems is estimating the error variance. In this paper we propose an estimator of the mean of the squared functions which is the numerator of SNR (Signal to Noise Ratio). To estimate SNR, the mean of the squared function should be firstly estimated. Our focus is on estimating the amplitude, that is the mean of the squared functions, in a nonparametric regression using a simple linear regression model with the quadratic form of observations as the dependent variable and the function of a lag as the regressor. Our method can be extended to nonparametric regression models with multivariate functions on unequally spaced design points or clustered designed points.

  • PDF