• 제목/요약/키워드: Regression Model Function

검색결과 840건 처리시간 0.028초

Censored varying coefficient regression model using Buckley-James method

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권5호
    • /
    • pp.1167-1177
    • /
    • 2017
  • The censored regression using the pseudo-response variable proposed by Buckley and James has been one of the most well-known models. Recently, the varying coefficient regression model has received a great deal of attention as an important tool for modeling. In this paper we propose a censored varying coefficient regression model using Buckley-James method to consider situations where the regression coefficients of the model are not constant but change as the smoothing variables change. By using the formulation of least squares support vector machine (LS-SVM), the coefficient estimators of the proposed model can be easily obtained from simple linear equations. Furthermore, a generalized cross validation function can be easily derived. In this paper, we evaluated the proposed method and demonstrated the adequacy through simulate data sets and real data sets.

The Weight Function in BIRQ Estimator for the AR(1) Model with Additive Outliers

  • Jung Byoung Cheol;Han Sang Moon
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2004년도 학술발표논문집
    • /
    • pp.129-134
    • /
    • 2004
  • In this study, we investigate the effects of the weight function in the bounded influence regression quantile (BIRQ) estimator for the AR(1) model with additive outliers. In order to down-weight the outliers of X-axis, the Mallows' (1973) weight function has been commonly used in the BIRQ estimator. However, in our Monte Carlo study, the BIRQ estimator using the Tukey's bisquare weight function shows less MSE and bias than that of using the Mallows' weight function or Huber's weight function.

  • PDF

Support Vector Machine for Interval Regression

  • Hong Dug Hun;Hwang Changha
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2004년도 학술발표논문집
    • /
    • pp.67-72
    • /
    • 2004
  • Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval linear and nonlinear regression models combining the possibility and necessity estimation formulation with the principle of SVM. For data sets with crisp inputs and interval outputs, the possibility and necessity models have been recently utilized, which are based on quadratic programming approach giving more diverse spread coefficients than a linear programming one. SVM also uses quadratic programming approach whose another advantage in interval regression analysis is to be able to integrate both the property of central tendency in least squares and the possibilistic property In fuzzy regression. However this is not a computationally expensive way. SVM allows us to perform interval nonlinear regression analysis by constructing an interval linear regression function in a high dimensional feature space. In particular, SVM is a very attractive approach to model nonlinear interval data. The proposed algorithm here is model-free method in the sense that we do not have to assume the underlying model function for interval nonlinear regression model with crisp inputs and interval output. Experimental results are then presented which indicate the performance of this algorithm.

  • PDF

Semiparametric Bayesian Estimation under Structural Measurement Error Model

  • Hwang, Jin-Seub;Kim, Dal-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제17권4호
    • /
    • pp.551-560
    • /
    • 2010
  • This paper considers a Bayesian approach to modeling a flexible regression function under structural measurement error model. The regression function is modeled based on semiparametric regression with penalized splines. Model fitting and parameter estimation are carried out in a hierarchical Bayesian framework using Markov chain Monte Carlo methodology. Their performances are compared with those of the estimators under structural measurement error model without a semiparametric component.

Least-Squares Support Vector Machine for Regression Model with Crisp Inputs-Gaussian Fuzzy Output

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권2호
    • /
    • pp.507-513
    • /
    • 2004
  • Least-squares support vector machine (LS-SVM) has been very successful in pattern recognition and function estimation problems for crisp data. In this paper, we propose LS-SVM approach to evaluating fuzzy regression model with multiple crisp inputs and a Gaussian fuzzy output. The proposed algorithm here is model-free method in the sense that we do not need assume the underlying model function. Experimental result is then presented which indicate the performance of this algorithm.

  • PDF

Semiparametric Bayesian estimation under functional measurement error model

  • Hwang, Jin-Seub;Kim, Dal-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권2호
    • /
    • pp.379-385
    • /
    • 2010
  • This paper considers Bayesian approach to modeling a flexible regression function under functional measurement error model. The regression function is modeled based on semiparametric regression with penalized splines. Model fitting and parameter estimation are carried out in a hierarchical Bayesian framework using Markov chain Monte Carlo methodology. Their performances are compared with those of the estimators under functional measurement error model without semiparametric component.

Robust varying coefficient model using L1 regularization

  • Hwang, Changha;Bae, Jongsik;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권4호
    • /
    • pp.1059-1066
    • /
    • 2016
  • In this paper we propose a robust version of varying coefficient models, which is based on the regularized regression with L1 regularization. We use the iteratively reweighted least squares procedure to solve L1 regularized objective function of varying coefficient model in locally weighted regression form. It provides the efficient computation of coefficient function estimates and the variable selection for given value of smoothing variable. We present the generalized cross validation function and Akaike information type criterion for the model selection. Applications of the proposed model are illustrated through the artificial examples and the real example of predicting the effect of the input variables and the smoothing variable on the output.

Separate Fuzzy Regression with Fuzzy Input and Output

  • Choi, Seung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • 제14권1호
    • /
    • pp.183-193
    • /
    • 2007
  • This paper shows that a response function for the center of fuzzy output nay not be the same as that for the spread in a fuzzy linear regression model and then suggests a separate fuzzy regression model makes a distinction between response functions of the center and the spread of fuzzy output. Also we use a least squares method to estimate the separate fuzzy regression model and compare an accuracy of proposed model with another fuzzy regression model developed by Diamond (1988) and Kao and Chyu (2003).

Hybrid Fuzzy Least Squares Support Vector Machine Regression for Crisp Input and Fuzzy Output

  • Shim, Joo-Yong;Seok, Kyung-Ha;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제17권2호
    • /
    • pp.141-151
    • /
    • 2010
  • Hybrid fuzzy regression analysis is used for integrating randomness and fuzziness into a regression model. Least squares support vector machine(LS-SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate hybrid fuzzy linear and nonlinear regression models with crisp inputs and fuzzy output using weighted fuzzy arithmetic(WFA) and LS-SVM. LS-SVM allows us to perform fuzzy nonlinear regression analysis by constructing a fuzzy linear regression function in a high dimensional feature space. The proposed method is not computationally expensive since its solution is obtained from a simple linear equation system. In particular, this method is a very attractive approach to modeling nonlinear data, and is nonparametric method in the sense that we do not have to assume the underlying model function for fuzzy nonlinear regression model with crisp inputs and fuzzy output. Experimental results are then presented which indicate the performance of this method.

ASYMPTOTIC NORMALITY OF ESTIMATOR IN NON-PARAMETRIC MODEL UNDER CENSORED SAMPLES

  • Niu, Si-Li;Li, Qlan-Ru
    • 대한수학회지
    • /
    • 제44권3호
    • /
    • pp.525-539
    • /
    • 2007
  • Consider the regression model $Y_i=g(x_i)+e_i\;for\;i=1,\;2,\;{\ldots},\;n$, where: (1) $x_i$ are fixed design points, (2) $e_i$ are independent random errors with mean zero, (3) g($\cdot$) is unknown regression function defined on [0, 1]. Under $Y_i$ are censored randomly, we discuss the asymptotic normality of the weighted kernel estimators of g when the censored distribution function is known or unknown.