• Title/Summary/Keyword: Regression Curve

Search Result 816, Processing Time 0.033 seconds

The Relationship between the Cognitive Impairment and Mortality in the Rural Elderly (농촌지역 노인들의 인지기능 장애와 사망과의 관련성)

  • Sun, Byeong-Hwan;Park, Kyeong-Soo;Na, Baeg-Ju;Park, Yo-Seop;Nam, Hae-Sung;Shin, Jun-Ho;Sohn, Seok-Joon;Rhee, Jung-Ae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.3 s.58
    • /
    • pp.630-642
    • /
    • 1997
  • The purpose of this study was to examine the mortality risk associated with cognitive impairment among the rural elderly. The subjective of study was 558 of 'A Study on the Depression and Cognitive Impairment in the Rural Elderly' of Jung Ae Rhee and Hyang Gyun Jung's study(1993). Cognitive impairment and other social and health factors were assessed in 558 elderly rural community residents. For this study, a Korean version of the Mini-Mental State Examination(MMSEK) was used as a global indicator of cognitive functioning. And mortality risk factors for each cognitive impairment subgroup were identified by univariate and multivariate Cox regression analysis. At baseline 22.6% of the sample were mildly impaired and 14.2% were severely impaired. As the age increased, the cognitive function was more impaired. Sexual difference was existed in the cognitive function level. Also the variables such as smoking habits, physical disorders had the significant relationship with cognitive function impairment. Across a 3-year observation period the mortality rate was 8.5% for the cognitively unimpaired, 11.1% for the mildly impaired, and 16.5% for the severly impaired respendents. And the survival probability was .92 for the cognitively unimpaired, .90 for the mildly impaired, and .86 for the severly impaired respondents. Compared to survival curve for the cognitively unimpaired group, each survival curve for the mildly and the severely impaired group was not significantly different. When adjustments models were not made for the effects of other health and social covariates, each hazard ratio of death of mildly and severely impaired persons was not significantly different as compared with the cognitively unimpaired. But, as MMSEK score increased, significantly hazard ratio of death decreased. Employing Cox univariate proportional hazards model, statistically other significant variables were age, monthly income, smoking habits, physical disorders. Also when adjustments were made for the effects of other health and social covariates, there was no difference in hazard ratio of death between those with severe or mild impairment and unimpaired persons. And as MMSEK score increased, significantly hazard ratio of death did not decrease. Employing Cox multivariate proportional hazards model, statistically other significant variables were age, monthly income, physical disorders. Employing Cox multivariate proportional hazards model by sex, at men and women statistically significant variable was only age. For both men and women, also cognitive impairment was not a significant risk factor. Other investigators have found that cognitive impairment is a significant predictor of mortality. But we didn't find that it is a significant predictor of mortality. Even though the conclusions of our study were not related to cognitive impairment and mortality, early detection of impaired cognition and attention to associated health problems could improve the quality of life of these older adults and perhaps extend their survival.

  • PDF

Animal Infectious Diseases Prevention through Big Data and Deep Learning (빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단)

  • Kim, Sung Hyun;Choi, Joon Ki;Kim, Jae Seok;Jang, Ah Reum;Lee, Jae Ho;Cha, Kyung Jin;Lee, Sang Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.137-154
    • /
    • 2018
  • Animal infectious diseases, such as avian influenza and foot and mouth disease, occur almost every year and cause huge economic and social damage to the country. In order to prevent this, the anti-quarantine authorities have tried various human and material endeavors, but the infectious diseases have continued to occur. Avian influenza is known to be developed in 1878 and it rose as a national issue due to its high lethality. Food and mouth disease is considered as most critical animal infectious disease internationally. In a nation where this disease has not been spread, food and mouth disease is recognized as economic disease or political disease because it restricts international trade by making it complex to import processed and non-processed live stock, and also quarantine is costly. In a society where whole nation is connected by zone of life, there is no way to prevent the spread of infectious disease fully. Hence, there is a need to be aware of occurrence of the disease and to take action before it is distributed. Epidemiological investigation on definite diagnosis target is implemented and measures are taken to prevent the spread of disease according to the investigation results, simultaneously with the confirmation of both human infectious disease and animal infectious disease. The foundation of epidemiological investigation is figuring out to where one has been, and whom he or she has met. In a data perspective, this can be defined as an action taken to predict the cause of disease outbreak, outbreak location, and future infection, by collecting and analyzing geographic data and relation data. Recently, an attempt has been made to develop a prediction model of infectious disease by using Big Data and deep learning technology, but there is no active research on model building studies and case reports. KT and the Ministry of Science and ICT have been carrying out big data projects since 2014 as part of national R &D projects to analyze and predict the route of livestock related vehicles. To prevent animal infectious diseases, the researchers first developed a prediction model based on a regression analysis using vehicle movement data. After that, more accurate prediction model was constructed using machine learning algorithms such as Logistic Regression, Lasso, Support Vector Machine and Random Forest. In particular, the prediction model for 2017 added the risk of diffusion to the facilities, and the performance of the model was improved by considering the hyper-parameters of the modeling in various ways. Confusion Matrix and ROC Curve show that the model constructed in 2017 is superior to the machine learning model. The difference between the2016 model and the 2017 model is that visiting information on facilities such as feed factory and slaughter house, and information on bird livestock, which was limited to chicken and duck but now expanded to goose and quail, has been used for analysis in the later model. In addition, an explanation of the results was added to help the authorities in making decisions and to establish a basis for persuading stakeholders in 2017. This study reports an animal infectious disease prevention system which is constructed on the basis of hazardous vehicle movement, farm and environment Big Data. The significance of this study is that it describes the evolution process of the prediction model using Big Data which is used in the field and the model is expected to be more complete if the form of viruses is put into consideration. This will contribute to data utilization and analysis model development in related field. In addition, we expect that the system constructed in this study will provide more preventive and effective prevention.

A Study on Characteristics of Lincomycin Degradation by Optimized TiO2/HAP/Ge Composite using Mixture Analysis (혼합물분석을 통해 최적화된 TiO2/HAP/Ge 촉매를 이용한 Lincomycin 제거특성 연구)

  • Kim, Dongwoo;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • In this study, it was found that determined the photocatalytic degradation of antibiotics (lincomycin, LM) with various catalyst composite of titanium dioxide ($TiO_2$), hydroxyapatite (HAP) and germanium (Ge) under UV-A irradiation. At first, various type of complex catalysts were investigated to compare the enhanced photocatalytic potential. It was observed that in order to obtain the removal efficiencies were $TiO_2/HAP/Ge$ > $TiO_2/Ge$ > $TiO_2/HAP$. The composition of $TiO_2/HAP/Ge$ using a statistical approach based on mixture analysis design, one of response surface method was investigated. The independent variables of $TiO_2$ ($X_1$), HAP ($X_2$) and Ge ($X_3$) which consisted of 6 condition in each variables was set up to determine the effects on LM ($Y_1$) and TOC ($Y_2$) degradation. Regression analysis on analysis of variance (ANOVA) showed significant p-value (p < 0.05) and high coefficients for determination value ($R^2$ of $Y_1=99.28%$ and $R^2$ of $Y_2=98.91%$). Contour plot and response curve showed that the effects of $TiO_2/HAP/Ge$ composition for LM degradation under UV-A irradiation. And the estimated optimal composition for TOC removal ($Y_2$) were $X_1=0.6913$, $X_2=0.2313$ and $X_3=0.0756$ by coded value. By comparison with actual applications, the experimental results were found to be in good agreement with the model's predictions, with mean results for LM and TOC removal of 99.2% and 49.3%, respectively.

Comparison of Deep Learning Frameworks: About Theano, Tensorflow, and Cognitive Toolkit (딥러닝 프레임워크의 비교: 티아노, 텐서플로, CNTK를 중심으로)

  • Chung, Yeojin;Ahn, SungMahn;Yang, Jiheon;Lee, Jaejoon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.1-17
    • /
    • 2017
  • The deep learning framework is software designed to help develop deep learning models. Some of its important functions include "automatic differentiation" and "utilization of GPU". The list of popular deep learning framework includes Caffe (BVLC) and Theano (University of Montreal). And recently, Microsoft's deep learning framework, Microsoft Cognitive Toolkit, was released as open-source license, following Google's Tensorflow a year earlier. The early deep learning frameworks have been developed mainly for research at universities. Beginning with the inception of Tensorflow, however, it seems that companies such as Microsoft and Facebook have started to join the competition of framework development. Given the trend, Google and other companies are expected to continue investing in the deep learning framework to bring forward the initiative in the artificial intelligence business. From this point of view, we think it is a good time to compare some of deep learning frameworks. So we compare three deep learning frameworks which can be used as a Python library. Those are Google's Tensorflow, Microsoft's CNTK, and Theano which is sort of a predecessor of the preceding two. The most common and important function of deep learning frameworks is the ability to perform automatic differentiation. Basically all the mathematical expressions of deep learning models can be represented as computational graphs, which consist of nodes and edges. Partial derivatives on each edge of a computational graph can then be obtained. With the partial derivatives, we can let software compute differentiation of any node with respect to any variable by utilizing chain rule of Calculus. First of all, the convenience of coding is in the order of CNTK, Tensorflow, and Theano. The criterion is simply based on the lengths of the codes and the learning curve and the ease of coding are not the main concern. According to the criteria, Theano was the most difficult to implement with, and CNTK and Tensorflow were somewhat easier. With Tensorflow, we need to define weight variables and biases explicitly. The reason that CNTK and Tensorflow are easier to implement with is that those frameworks provide us with more abstraction than Theano. We, however, need to mention that low-level coding is not always bad. It gives us flexibility of coding. With the low-level coding such as in Theano, we can implement and test any new deep learning models or any new search methods that we can think of. The assessment of the execution speed of each framework is that there is not meaningful difference. According to the experiment, execution speeds of Theano and Tensorflow are very similar, although the experiment was limited to a CNN model. In the case of CNTK, the experimental environment was not maintained as the same. The code written in CNTK has to be run in PC environment without GPU where codes execute as much as 50 times slower than with GPU. But we concluded that the difference of execution speed was within the range of variation caused by the different hardware setup. In this study, we compared three types of deep learning framework: Theano, Tensorflow, and CNTK. According to Wikipedia, there are 12 available deep learning frameworks. And 15 different attributes differentiate each framework. Some of the important attributes would include interface language (Python, C ++, Java, etc.) and the availability of libraries on various deep learning models such as CNN, RNN, DBN, and etc. And if a user implements a large scale deep learning model, it will also be important to support multiple GPU or multiple servers. Also, if you are learning the deep learning model, it would also be important if there are enough examples and references.

Determination of methamphetamine, 4-hydroxymethamphetamine, amphetamine and 4-hydroxyamphetamine in urine using dilute-and-shoot liquid chromatography-tandem mass spectrometry (시료 희석 주입 LC-MS/MS를 이용한 소변 중 메스암페타민, 4-하이드록시메스암페타민, 암페타민 및 4-하이드록시암페타민 동시 분석)

  • Heo, Bo-Reum;Kwon, NamHee;Kim, Jin Young
    • Analytical Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.161-170
    • /
    • 2018
  • The epidemic of disorders associated with synthetic stimulants, such as methamphetamine (MA) and amphetamine (AP), is a health, social, legal, and financial problem. Owing to the high potential of their abuse and addiction, reliable analytical methods are required to detect and identify MA, AP, and their metabolites in biological samples. Thus, a dilute-and-shoot liquid chromatography-tandem mass spectrophotometry (LC-MS/MS) was developed for simultaneous determination of MA, 4-hydroxymethamphetamine (4HMA), AP, and 4-hydroxyamphetamine (4HA) in urine. Urine sample ($100{\mu}L$) was mixed with $50{\mu}L$ of mobile phase consisting of 0.4 % formic acid and methanol and $50{\mu}L$ of working internal-standard solution. Aliquots of $8{\mu}L$ diluted urine was injected into the LC-MS/MS system. For all analytes, chromatographic separation was performed using a C18 reversed-phase column with gradient elution and a total run time of 5 min. The identification and quantification were performed by multiple reaction monitoring (MRM). Linear least-squares regression was conducted to generate a calibration curve, with $1/x^2$ as the weighting factor. The linear ranges were 2.0-200, 1.0-800, and 10-2500 ng/mL for 4HA and 4HMA, AP, and MA, respectively. The inter- and intraday precisions were within 6.6 %, whereas the inter- and intraday accuracies ranged from -14.9 to 11.3 %. The low limits of quantification were 2.0 ng/mL (4HA and 4HMA), 1.0 ng/mL (AP), and 10 ng/mL (MA). The proposed method exhibited satisfactory selectivity, dilution integrity, matrix effect, and stability, which are required for validation. Moreover, the purification efficiency of high-speed centrifugation was clearly higher than 6-15 % for QC samples (n=5), which was higher than that of the membrane-filtration method. The applicability of the proposed method was tested by forensic analysis of urine samples from drug abusers.

Impacts assessment of Climate changes in North Korea based on RCP climate change scenarios II. Impacts assessment of hydrologic cycle changes in Yalu River (RCP 기후변화시나리오를 이용한 미래 북한지역의 수문순환 변화 영향 평가 II. 압록강유역의 미래 수문순환 변화 영향 평가)

  • Jeung, Se Jin;Kang, Dong Ho;Kim, Byung Sik
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.39-50
    • /
    • 2019
  • This study aims to assess the influence of climate change on the hydrological cycle at a basin level in North Korea. The selected model for this study is MRI-CGCM 3, the one used for the Coupled Model Intercomparison Project Phase 5 (CMIP5). Moreover, this study adopted the Spatial Disaggregation-Quantile Delta Mapping (SDQDM), which is one of the stochastic downscaling techniques, to conduct the bias correction for climate change scenarios. The comparison between the preapplication and postapplication of the SDQDM supported the study's review on the technique's validity. In addition, as this study determined the influence of climate change on the hydrological cycle, it also observed the runoff in North Korea. In predicting such influence, parameters of a runoff model used for the analysis should be optimized. However, North Korea is classified as an ungauged region for its political characteristics, and it was difficult to collect the country's runoff observation data. Hence, the study selected 16 basins with secured high-quality runoff data, and the M-RAT model's optimized parameters were calculated. The study also analyzed the correlation among variables for basin characteristics to consider multicollinearity. Then, based on a phased regression analysis, the study developed an equation to calculate parameters for ungauged basin areas. To verify the equation, the study assumed the Osipcheon River, Namdaecheon Stream, Yongdang Reservoir, and Yonggang Stream as ungauged basin areas and conducted cross-validation. As a result, for all the four basin areas, high efficiency was confirmed with the efficiency coefficients of 0.8 or higher. The study used climate change scenarios and parameters of the estimated runoff model to assess the changes in hydrological cycle processes at a basin level from climate change in the Amnokgang River of North Korea. The results showed that climate change would lead to an increase in precipitation, and the corresponding rise in temperature is predicted to cause elevating evapotranspiration. However, it was found that the storage capacity in the basin decreased. The result of the analysis on flow duration indicated a decrease in flow on the 95th day; an increase in the drought flow during the periods of Future 1 and Future 2; and an increase in both flows for the period of Future 3.

Development of a Predictive Model Describing the Growth of Listeria Monocytogenes in Fresh Cut Vegetable (샐러드용 신선 채소에서의 Listerio monocytogenes 성장예측모델 개발)

  • Cho, Joon-Il;Lee, Soon-Ho;Lim, Ji-Su;Kwak, Hyo-Sun;Hwang, In-Gyun
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.1
    • /
    • pp.25-30
    • /
    • 2011
  • In this study, predictive mathematical models were developed to predict the kinetics of Listeria monocytogenes growth in the mixed fresh-cut vegetables, which is the most popular ready-to-eat food in the world, as a function of temperature (4, 10, 20 and $30^{\circ}C$). At the specified storage temperatures, the primary growth curve fit well ($r^2$=0.916~0.981) with a Gompertz and Baranyi equation to determine the specific growth rate (SGR). The Polynomial model for natural logarithm transformation of the SGR as a function of temperature was obtained by nonlinear regression (Prism, version 4.0, GraphPad Software). As the storage temperature decreased from $30^{\circ}C$ to $4^{\circ}C$, the SGR decreased, respectively. Polynomial model was identified as appropriate secondary model for SGR on the basis of most statistical indices such as mean square error (MSE=0.002718 by Gompertz, 0.055186 by Baranyi), bias factor (Bf=1.050084 by Gompertz, 1.931472 by Baranyi) and accuracy factor (Af=1.160767 by Gompertz, 2.137181 by Baranyi). Results indicate L. monocytogenes growth was affected by temperature mainly, and equation was developed by Gompertz model (-0.1606+$0.0574^*Temp$+$0.0009^*Temp^*Temp$) was more effective than equation was developed by Baranyi model (0.3502-$0.0496^*Temp$+$0.0022^*Temp^*Temp$) for specific growth rate prediction of L.monocytogenes in the mixed fresh-cut vegetables.

S-wave Velocity and Attenuation Structure from Multichannel Seismic surface waves: Geotechnical Characteristics of NakDong Delta Soil (다중채널 표면파 자료를 이용하여 구한 S파 속도와 감쇠지수 구조: 낙동강 하구의 연약 지반 특성)

  • Jung, Hee-Ok
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.774-783
    • /
    • 2004
  • The S wave velocity and Q$s^{-1}$ structure of the uppermost part of the soil in Nakdong Delta area have been obtained to determine the characteristics of the forementioned soil. The phase and attenuation coefficients of multichannel seismic records were inverted to obtain the S wave velocity and Q$s^{-1}$ structure of the soil. The inversion results have been compared with the borehole measurements of the area. The seismic signal of the nearest geophone from a seismic source was used as the source signal to obtain the attenuation coefficients. Amplitude ratios of the signal at each geophone to the source signal wave plotted as a function of distance for the frequency range between 10 Hz and 45 Hz. The slope of a linear regression line which fits amplitude ratio-distance relationship best for a given frequency was used as the attenuation coefficients for the frequency. The dispersion curve of Rayleigh waves and the attenuation coefficients were inverted to obtain the S-wave velocity and Q$s^{-1}$, respectively, in the uppermost 8 meter of soil layer. The borehole measurements of the area show that are two distinct layers; the upper 4 meter of silty-sand and the lower 4 meter of silty-clay. The inversion results indicate that the shear wave velocity of the upper layer is 80 m/sec and 40m/sec in the lower silty-clay layer. The spacial resolution of the shear wave velocity structure is very good down to a depth of 8 meter. The Q$s^{-1}$ in the upper silty-sand layer is 0.02 and increase to 0.03 in the lower silty-sand layer. The spacial resolution of quality factor is relatively good down to a depth of 5 meter, but very poor below the depth. In this study, the S-wave velocity is higher in the silty-clay and the Q$s^{-1}$ is smaller silty-sand than in the silty-clay. However, much more data should be analyzed and accumulated before making any generalization on the shear wave velocity and Q$s^{-1}$ of the sediments.

Development of Growth Models as Affected by Cultivation Season and Transplanting Date and Estimation of Prediction Yield in Kimchi Cabbage (재배시기, 정식일에 따른 배추의 생육 모델 개발 및 생산량 예측 평가)

  • Lee, Jin Hyoung;Lee, Hee Ju;Kim, Sung Kyeom;Lee, Sang Gyu;Lee, Hee Su;Choi, Chang Sun
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.235-241
    • /
    • 2017
  • This study was carried out to estimate growth characteristics of Kimchi cabbage cultivated in two different growing seasons and three transplanting dates in the greenhouses, and to create a predicting model for the production of Kimchi cabbage based on the growth parameters and climatic elements. Kimchi cabbages were transplanted three times at intervals of two weeks in spring and autumn growing seasons. Sigmoidal models for the estimation of fresh weight (Fw) was designed with days after transplanting, which were Fw=4451.5/[1+exp{-(DAT-34.1)/3.6}]($R^2=0.992$) and Fw=7182.0/[1+exp{-(DAT-53.8)/11.6}] ($R^2=0.979$), respectively. The relationship between fresh weight of Kimchi cabbage and growing degree days (GDD) was highly correlated, and the regression model represented by Fw=4451.5/[1+exp{-(GDD-34.1)/3.6}] ($R^2=0.992$) in spring growing season. The yield of Kimchi cabbage under spring and autumn growing season were estimated 11348.3kg/10a and 15128.2kg/10a, respectively, which were much different than outdoor culture each growing season, while greenhouse cultivation have shown similar results. To estimate the efficacy of prediction yield in Kimchi cabbage, we will need to supplement a predicting model, which was based on the parameters and climatic elements by the field cultivation.

Establishing a Nomogram for Stage IA-IIB Cervical Cancer Patients after Complete Resection

  • Zhou, Hang;Li, Xiong;Zhang, Yuan;Jia, Yao;Hu, Ting;Yang, Ru;Huang, Ke-Cheng;Chen, Zhi-Lan;Wang, Shao-Shuai;Tang, Fang-Xu;Zhou, Jin;Chen, Yi-Le;Wu, Li;Han, Xiao-Bing;Lin, Zhong-Qiu;Lu, Xiao-Mei;Xing, Hui;Qu, Peng-Peng;Cai, Hong-Bing;Song, Xiao-Jie;Tian, Xiao-Yu;Zhang, Qing-Hua;Shen, Jian;Liu, Dan;Wang, Ze-Hua;Xu, Hong-Bing;Wang, Chang-Yu;Xi, Ling;Deng, Dong-Rui;Wang, Hui;Lv, Wei-Guo;Shen, Keng;Wang, Shi-Xuan;Xie, Xing;Cheng, Xiao-Dong;Ma, Ding;Li, Shuang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3773-3777
    • /
    • 2015
  • Background: This study aimed to establish a nomogram by combining clinicopathologic factors with overall survival of stage IA-IIB cervical cancer patients after complete resection with pelvic lymphadenectomy. Materials and Methods: This nomogram was based on a retrospective study on 1,563 stage IA-IIB cervical cancer patients who underwent complete resection and lymphadenectomy from 2002 to 2008. The nomogram was constructed based on multivariate analysis using Cox proportional hazard regression. The accuracy and discriminative ability of the nomogram were measured by concordance index (C-index) and calibration curve. Results: Multivariate analysis identified lymph node metastasis (LNM), lymph-vascular space invasion (LVSI), stromal invasion, parametrial invasion, tumor diameter and histology as independent prognostic factors associated with cervical cancer survival. These factors were selected for construction of the nomogram. The C-index of the nomogram was 0.71 (95% CI, 0.65 to 0.77), and calibration of the nomogram showed good agreement between the 5-year predicted survival and the actual observation. Conclusions: We developed a nomogram predicting 5-year overall survival of surgically treated stage IA-IIB cervical cancer patients. More comprehensive information that is provided by this nomogram could provide further insight into personalized therapy selection.