• Title/Summary/Keyword: Regional groundwater

Search Result 171, Processing Time 0.022 seconds

GIS technolgy for analysing regional geologic hazards (Landslides) (광역 지질재해분석(산사태)을 위한 GIS활용)

  • 김윤종;김원영;유일현
    • The Journal of Engineering Geology
    • /
    • v.2 no.2
    • /
    • pp.131-140
    • /
    • 1992
  • GIS(Geographic Information System) technology was applied for analysis of the potential degree of regional geologic hazard, especially landslide hazards in the suburb of Seoul City, whereby a regional geologic hazard map was produced. The factors causing a landslide such as slope geometry, geology, groundwater, soil property, rainfall and vegetation were incorporated through GIS in order to predict the potential hazards in this area. Cartographic simulation was finally made with these factors to produce a regional geologic hazard map. For this study, ARC/INFO and ERDAS systems were used in SUN 4-390 workstation.

  • PDF

Regional Drought Assessment Considering Climate Change and Relationship with Agricultural Water in Jeju Island (기후변화를 고려한 제주지역의 권역별 가뭄 평가 및 농업용수에의 영향 고찰)

  • Song, Sung-Ho;Yoo, Seung-Hwan;Bae, Seung-Jong
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.625-638
    • /
    • 2013
  • Recently, the occurrences of droughts have been increased because of global warming and climate change. Water resources that mostly rely on groundwater are particularly vulnerable to the impact of precipitation variation, one of the major elements of climate change, are very sensitive to changes in the seasonal distribution as well as the average annual change in the viewpoint of agricultural activity. In this study, the status of drought for the present and future on Jeju Island which entirely rely on groundwater using SPI and PDSI were analyzed considering regional distribution of crops in terms of land use and fluctuation of water demand. The results showed that the precipitation distribution in Jeju Island is changed in intensity as well as seasonal variation of extreme events and the amount increase of precipitation during the dry season in the spring and fall indicated that agricultural water demand and supply policies would be considered by regional characteristics, especially the western region with largest market garden crops. Regarding the simulated future drought, the drought would be mitigated in the SPI method because of considering total rainfall only excluding intensity variation, while more intensified in the PDSI because it considers the evapotranspiration as well as rainfall as time passed. Moreover, the drought in the northern and western regions is getting worse than in the southern region so that the establishment of regional customized policies for water supply in Jeju Island is needed.

Proposal for the groundwater based countermeasures to secure water resources considering regional characteristics of water resources vulnerable areas (국내 수자원 이용 취약지역의 지역 특성을 고려한 지하수 기반 수자원 확보 방안 제시)

  • Kim, Geon;Lee, Jae-Beom;Agossou, Amos;Yang, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.191-203
    • /
    • 2022
  • This study is a follow-up study of vulnerable areas according to the vulnerability assessment of groundwater resource management in Korea. In this study, an optimal operation plan for groundwater resource management was proposed for areas vulnerable to groundwater resource management in Korea derived from previous studies. Prior to presenting the optimal operation plan for groundwater resource management, this study grasped the current status of changes in groundwater level and seawater penetration area for vulnerable areas using MODFLOW, a groundwater flow analysis program. As a result of the analysis using basic data for 10 years from 2009 to 2018, the groundwater level fell and the sea infiltration area increased. The final purpose of this study, the optimal operation plan for groundwater resource management, was selected as a total of four alternatives that can be expected to have positive effects to increase groundwater level and reduce seawater penetration. As a result of analyzing the amount of change in groundwater level and seawater penetration by applying the selected optimal operation plan, positive effects were found in all methods. It is expected that the optimal operation plan for groundwater resource management proposed in this study will be applied not only to vulnerable areas of groundwater resources in Korea but also to areas requiring development to establish efficient groundwater resource management measures.

Analysis of Groundwater Pollution Potential and Development of Graphic User Interface using DRASTIC System (DRASTIC을 이용한 지하수 오염 가능성 분석 및 그래픽 사용자 인터페이스 개발연구)

  • 민경덕;이영훈;이사로;김윤종;한정상
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.2
    • /
    • pp.101-109
    • /
    • 1996
  • DRASTIC system was used in this study that was developed by U.S. EPA and is widely used for evaluating relative groundwater pollution potential by using hydrogeological factors. The DRASTIC system can be used for selection of well sites, selection of waste disposal sites and basic data of landuse for groundwater protection, and monitoring purpose and efficient allocation of resource for remediation. This study analyzed regional groundwater pollution potential around Chungju Lake using the DRASTIC system. Hydrogeological factors used in this study are depth to water, net recharge, aquifer media, soil media, slope and hydraulic conductivity. For accurate analysis, lineament density that is extracted from image processing of satellite image is overlaid to the DRASTIC system. Results of this study are mapped so groundwater pollution potential and risk degrees can be understood easily and quickly. A graphic user interface is developed to process the data conveniently.

  • PDF

Development of vulnerable period assessment method for efficient groundwater resources management in upstream of Nakdong river basin using entropy method (엔트로피 방법을 이용한 낙동강 상류 지역의 지하수자원 관리 취약시기 평가 방법 개발)

  • Kim, Il Hwan;Lee, Jae-Beom;Yang, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.761-768
    • /
    • 2018
  • Groundwater resources are becoming depleted due to climate change factors and non climate change factors. In order to effectively groundwater resources management, we developed a method for evaluating vulnerable periods of groundwater resource management in watershed areas. The watershed based vulnerability assessment was conducted independently of the evaluation of vulnerable areas and vulnerable periods for sub watersheds. The vulnerable area evaluation index was standardized and applied to the independent vulnerable period index each region. It was applied to Bonghwa-gun, Andong-si, Yecheon-gun, Mungyeong-si and Sangju-si in the upstream of the Nakdong river basin. As a result, the Sangju-si's August was the most vulnerable at 0.278, and Andong-si was assessed to be vulnerable to groundwater resource management during 8 months of the year in study area. Using the developed method, we can find efficient management method considering the time and regional of groundwater resources.

Study of Groundwater Recharge Rate Change by Using Groundwater Level and GRACE Data in Korea (지하수위와 GRACE 자료를 이용한 국내 지하수 함양량 변화 연구)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Jo, Young-Heon;Kim, Jinsoo;Park, Soyoung;Cheong, Jae-Yeol
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.265-277
    • /
    • 2019
  • Changes in the amount, intensity, frequency, and type of precipitation, in conjunction with global warming and climate change, critically impact groundwater recharge and associated groundwater level fluctuations. Monthly gravity levels by the Gravity Recovery and Climate Experiment (GRACE) are acquired to monitor total water storage changes at regional and global scales. However, there are inherent difficulties in quantitatively relating the GRACE observations to groundwater level data due to the difficulties in spatially representing groundwater levels. Here three local interpolation methods (kriging, inverse distance weighted, and natural neighbor) were implemented to estimate the areal distribution of groundwater recharge changes in South Korea during the 2002-2016 period. The interpolated monthly groundwater recharge changes are compared with the GRACE-derived groundwater storage changes. There is a weak decrease in the groundwater recharge changes over time in both the GRACE observations and groundwater measurements, with the rate of groundwater recharge change exhibiting mean and median values of -0.01 and -0.02 cm/month, respectively.

Study on Major Mineral Distribution Characteristics in Groundwater in South Korea (국내 지하수의 주요 미네랄 분포 특성에 관한 연구)

  • Kim, Jeonghee;Ryoo, Rina;Lee, Jongsu;Song, Daesung;Lee, Young-Joo;Jun, Hang-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.566-573
    • /
    • 2016
  • In order to support effective usage of groundwater as an alternative water resource in future, we investigated distribution characteristics of minerals related with human health. While recent studies tended to focus on small scale, this study broadened research area up to nationwide scale to understand groundwater hydrology and regional, geological distributions of minerals in wide area; we investigated mineral distributions of national groundwater monitoring networks, developed GIS-based mineral maps, and reviewed correlation with geological features. As a result, calcium showed the highest concentration among 5 minerals (Ca, Mg, Na, K, Si) and potassium showed the lowest. Calcium concentration in limestone and sedimentary zone was the highest, and that in pore-volcanic-rock zone was the lowest. While calcium, magnesium and sodium showed differences in concentrations in intrusive-igneous-rock and sedimentary zone, potassium was not within geological features. When we studied regional differences, there were no tendency, but Jeju and Gangwon area showed differences in concentrations of calcium and silica.

Current States of the Global Water Market and Considerations for the Groundwater Industry in South Korea (물 시장의 현주소와 지하수 산업에 대한 고찰)

  • Kim, Byung-Woo;Koh, Yong-Kwon;Choi, Doo-Houng;Kim, Deog-Geun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.431-440
    • /
    • 2014
  • Since the establishment of the Groundwater Act in Korea in 1993, the national policy on groundwater has focused on the preservation and management of groundwater, which should be used only as a subsidiary water resource. However, population growth, increased water demand, climate change, and the need for uniform water distribution have brought changes to groundwater policy, and have led to the prioritization of development projects such as groundwater dams and river bank filtration. Population growth, changes to the water environment, and increased water risks have all played a role in triggering rapid growth within the water industry; the size of the investment in water resources will also continue to increase worldwide. Until now, private wells and bottled mineral water have led the groundwater industry in South Korea. However, a new area of the groundwater industry, which includes the health and medical sciences, employs groundwater properties derived from regional geology, and is growing. This requires the advancement of groundwater research and technical development connected with ICT (Information and Communication Technology) and medical science, and that the public development of groundwater and its various applications is expanded through locating groundwater in the core of the water industry cluster.

A Study on the Development of Regional Low-flow runoff Model at the Youngsan River Basin (영산강 유역의 지역갈수 유출 모형 개발에 관한 연구)

  • 김경수;조기태
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.8-14
    • /
    • 2000
  • The present day, interest in low flow statistics has been increased, primarily because of the increase in water demands and the contamination of water quality and the limitation of water resource development and the annual water supply stability. The model for estimating low flow statistics is points of this study chosen catchments in the Youngsan basin. For the purpose of this study. the low-flow discharge at 23 points, where absent gauging station is unmeasured and the data is used for the model. Finally, the regional formula to estimate the low flow statistics at the unmeasured point is proposed.

  • PDF