• Title/Summary/Keyword: Regional groundwater

Search Result 171, Processing Time 0.03 seconds

Study on The Salinization in Groundwater of the Eastern Area of Cheju Island (제주도 동부지역 지하수의 염수화에 관한 연구)

  • 김지영;오윤근;류성필
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.47-58
    • /
    • 2001
  • According to the results of the groundwater quality investigation about 230 holes all over the country, the groundwater which was in excess of standard grows larger every year and closed holes increased to 23,457 holes in 1997 from 15,724 holes in 1996. This is the major reasons that water quality contamination, shortage of water quantity, increasing of salinity and so on. There are 7 groundwater salinization sources which are condisered as most important on a regional level. And among theses the Cheju Island groundwater salinization sources are (1) halite solution, (2) natural saline groundwater, (3) sea-water intrusion. The method of taking an isotopes is one of research methods of the origin of groundwater salinization and is used in so many studies because it has very high confidence. $^{18O}O, ^2H, ^3H, ^{14}C$ and so on in an isotopes are frequently used in the method of them. Consequently on this study we analyzed major ions and $^3H$ in groundwater, sea-water and rain of the eastern part of cheju island known as contaminated site from long time ago to examine the origin of groundwater salinization. Relation ratios of the major ions versus chloride ion shows similar tendency to sea-water. This indicates that sea-water entered the groundwater layer. And amount of $^3H$ in holes of the land side is higher than of the sea side. Relation of chloride ion versus $^3$H indicates negative character. Therefore we can think that the reason of groundwater salinization of this part is natural saline groundwater and halite solution by relation.

  • PDF

Study on The Gross Alpha Analysis Method with LSC (LSC를 이용한 전알파 분석법 연구)

  • Ju, Byoung Kyu;Kim, Moon Su;Kim, Hyun Koo;Kim, Dong Su;Kim, Young Rok;Jeong, Do Hwan;Yang, Jae Ha;Park, Sun Hwa;Kim, Tae Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.104-110
    • /
    • 2014
  • In order to study gross alpha analysis method using LSC, the efficiency tests with uranium standard materials were performed and then compared with the GPC method (US EPA 900.0 method) using 15 groundwater samples. For 15 groundwater samples, the average efficiencies of the GPC and LSC method were 7~11% and 90%, respectively. The average precisions of the GPC and LSC method were 16.16% and 6.00%, respectively. Also, The average standard deviations for 15 samples were 7.38 pCi/L and 2.95 pCi/L, respectively. The determination coefficient of the tested results by two methods was 0.9948. As a result, the LSC method tested in this study was applicable for the screening of the gross alpha and showed the advantages in the gross alpha measurement due to the simple measurement procedures.

Adsorption and Leaching Characteristics of Ionic Pesticides in the Soils of Jeju Island, Korea (제주도 토양 중 이온계 농약의 흡착 및 용탈 특성)

  • Chun, Si-Bum;Hyun, Ik-Hyun;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.28 no.8
    • /
    • pp.689-700
    • /
    • 2019
  • The adsorption and leaching characteristics of five ionic pesticides including four acidic pesticides (2,4-D, dicamba, MCPA, and MCPP) and one amphoteric pesticide (imazaquin) in agricultural soils were investigated. Soils around spring waters that were heavily affected by pesticide run-off and soils around wells considering the regional characteristics in Jeju Island were collected at 24 stations. The Freundlich constant, $K_F$ value, which is a measure of the adsorption capacity, decreased in the order of 2,4-D > MCPA > MCPP > dicamba > imazaquin. The adsorption capacity of these ionic pesticides decreased with increasing pH owing to the effects of ionization of pesticides and different ionizable functional groups of soils. The leaching of ionic pesticides in the soil column showed a reverse relationship with their adsorption in soils, namely, the ionic pesticides were leached more quickly for the pesticides with lower adsorption capacity. The groundwater contamination potential of the ionic pesticides was evaluated in the order of imazaquin > MCPA > MCPP > dicamba > 2.4-D according to the groundwater ubiquity score based on soil Koc and the half-life of the pesticide.

Assessment of Future Climate Change Impact on Groundwater recharge, Baseflow and Sediment in Steep Sloping Watershed (미래 기후변화에 따른 급경사지 유역에서의 지하수 함양, 기저유출 및 토양유실 평가)

  • Lee, Ji Min;Jung, Younghun;Park, Younshik;Kang, Hyunwoo;Lim, Kyoung Jae;Kim, Hungsoo
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.173-185
    • /
    • 2014
  • Climate change has caused detrimental phenomena such as heavy rainfall which could aggravate soil erosion. Accordingly, it is needed to evaluate the groundwater recharge, baseflow, and soil erosion for the efficient management of water resources and quality. In this study, future climate change scenarios were applied to the H aean-myeon watershed which is a steep sloping watershed in South Korea to analyze groundwater recharge, baseflow, sediment. Also, the variation of groundwater recharge, baseflow, sediment was analyzed according to the change of slope (5 %). Simulated periods were divided into three terms (2013 ~ 2040 years, 2041 ~ 2070 years, 2071 ~ 2100 years). As a result of this study, average groundwater recharge and baseflow increased by 50 %, 42 %, and sediment decreased by 72 %, respectively. In these regards, the suggested method will positively contribute to hydro-ecosystem and reduction of muddy water at a steep sloping watershed.

Setting limits for water use in the Wairarapa Valley, New Zealand

  • Mike, Thompson
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.227-227
    • /
    • 2015
  • The Wairarapa Valley occupies a predominantly rural area in the lower North Island of New Zealand. It supports a mix of intensive farming (dairy), dry stock farming (sheep and beef cattle) and horticulture (including wine grapes). The valley floor is traversed by the Ruamahanga River, the largest river in the Wellington region with a total catchment area of 3,430 km2. Environmental, cultural and recreational values associated with this Ruamahanga River are very high. The alluvial gravel and sand aquifers of the Wairarapa Valley, support productive groundwater aquifers at depths of up to 100 metres below ground while the Ruamahanga River and its tributaries present a further source of water for users. Water is allocated to users via resource consents by Greater Wellington Regional Council (GWRC). With intensifying land use, demand from the surface and groundwater resources of the Wairarapa Valley has increased substantially in recent times and careful management is needed to ensure values are maintained. This paper describes the approach being taken to manage water resources in the Wairarapa Valley and redefine appropriate limits of sustainable water use. There are three key parts: Quantifying the groundwater resource. A FEFLOW numerical groundwater flow model was developed by GWRC. This modelling phase provided a much improved understanding of aquifer recharge and abstraction processes. It also began to reveal the extent of hydraulic connection between aquifer and river systems and the importance of moving towards an integrated (conjunctive) approach to allocating water. Development of a conjunctive management framework. The FEFLOW model was used to quantify the stream flow depletion impacts of a range of groundwater abstraction scenarios. From this, three abstraction categories (A, B and C) that describe diminishing degrees of hydraulic connection between ground and surface water resources were mapped in 3 dimensions across the Valley. Interim allocation limits have been defined for each of 17 discrete management units within the valley based on both local scale aquifer recharge and stream flow depletion criteria but also cumulative impacts at the valley-wide scale. These allocation limits are to be further refined into agreed final limits through a community-led decision making process. Community involvement in the limit setting process. Historically in New Zealand, limits for sustainable resource use have been established primarily on the basis of 'hard science' and the decision making process has been driven by regional councils. Community involvement in limit setting processes has been through consultation rather than active participation. Recent legislation in the form of a National Policy Statement on Freshwater Management (2011) is reforming this approach. In particular, collaborative consensus-based decision making with active engagement from stakeholders is now expected. With this in mind, a committee of Wairarapa local people with a wide range of backgrounds was established in 2014. The role of this committee is to make final recommendations about resource use limits (including allocation of water) that reflect the aspirations of the communities they represent. To assist the committee in taking a holistic view it is intended that the existing numerical groundwater flow models will be coupled with with surface flow, contaminant transport, biological and economic models. This will provide the basis for assessing the likely outcomes of a range of future land use and resource limit scenarios.

  • PDF

Spatial-temporal Variations of Nitrate Levels in Groundwater of Jeju Island, Korea: Evaluation of Long-term (1993-2015) Monitoring Data (제주도 지하수질산염 농도의 시·공간적변화 특성: 장기(1993-2015) 모니터링 자료의 평가)

  • Kim, Ho-Rim;Oh, Junseop;Do, Hyun-Kwon;Lee, Kyung-Jin;Hyun, Ik-Hyun;Oh, Sang-Sil;Kam, Sang-Kyu;Yun, Seong-Taek
    • Economic and Environmental Geology
    • /
    • v.51 no.1
    • /
    • pp.15-26
    • /
    • 2018
  • The spatio-temporal variations of nitrate concentrations in groundwater of Jeju Island were evaluated by an analysis of time series groundwater quality data (N = 21,568) that were collected from regional groundwater monitoring (number of wells = 4,835) for up to 20 years between 1993 and 2015. The median concentration of $NO_3-N$ is 2.5 mg/L, which is slightly higher than those reported from regional surveys in other countries. Nitrate concentrations of groundwater in wells tend to significantly vary according to different water usage (of the well), administrative districts, and topographic elevations: nitrate level is higher in low-lying agricultural and residential areas than those in high mountainous areas. The Mann-Kendall trend test and Sen's slope analysis show that nitrate concentration in mid-mountainous areas tends to increase, possibly due to the expansion of agricultural areas toward highland. On the other hand, nitrate concentrations in the Specially Designated Groundwater Quality Protection Zones show the temporally decreasing trend, which implies the efficiency of groundwater management actions in Jeju. Proper measures for sustainable groundwater quality management are suggested in this study.

Relation between lineament and well productivity (지질구조선과 지하수 산출성간의 상관성 평가)

  • Kim Gyu-Beom;Lee Gang-Geun;Lee Jang-Ryong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.85-89
    • /
    • 2005
  • Lineament maps are the important tools that may reveal points of groundwater recharge, flow and development. In particular, groundwater flows and yields in mountainous area, composed of crystalline rocks with many fractures, are governed mainly by the lineaments corresponding to fractures, joints and faults. Lineaments may give important information on the best distribution of wells and their management. For two districts; Pohang and Cheonan, the relationship between lineament and groundwater factors was analyzed. To compare groundwater productivity, storativity, and transmissivity of a well site along the distance to lineament, the distances to lineament was regrouped into five groups with an equal range, 100m, for the Pohang district and they are also divided into five groups with an equal range, 150m, for the Cheonan district. From the results of the Spearman Rank Correlation Analysis and Kendall Analysis for each group, the means of SPC and T of wells which are located near lineaments generally have large values. The means of SPC and T show a reverse linear relationship with a lineament distance, but the means of S shows a disperse distribution and no distinct linear relation. Result of the linear regression model between SPC and lineament length density shows that it will be effective to use the lineament length density map when finding the optimal well site on a regional scale.

  • PDF

Development of Agricultural Groundwater Usage Model Considering Multipurpose Water in Jeju Island (다목적 용수를 고려한 제주도 농업용 지하수 이용량 모델 개발)

  • An, Jung-Gi;Song, Sung-Ho;Lee, Dong-Rim
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.515-524
    • /
    • 2015
  • The estimation of groundwater usage in Jeju island is important to understand hydrologic cycle system and to plan management of water resource because large amounts of groundwater have been used for agricultural and domestic purpose. The model has been developed to estimate agricultural groundwater usage for garlic at uplands and citrus at orchards raising outdoors using the soil water balance model from FAO 56, respectively. The total amount of water supplied for the crop evapotranspiration and the multipurpose function such as sprout promotion can be simulated by the model. However, due to the discrepancy of water use in initial stage between calculated and observed, the model was calibrated and verified using actual groundwater usage monitoring data for 3.5 years (2011.6 to 2014.12) at three uplands for garlic and three orchards for citrus. Consequently, it would be concluded that the model simulated efficiently actual water usage in that root mean square (RMS) and normalized RMS of the validation stage were less than 8.99 mm and 2.43%, respectively, in two different conditions.

Analysis of Groundwater Conductivity and Water Temperature Changes in Greenhouse Complex by Water Curtain Cultivation (수막용수 사용으로 인한 시설재배지역의 지하수 수온과 전기전도도 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.93-103
    • /
    • 2023
  • This study aimed to analyze the impact of water curtain cultivation in the greenhouse complexes on groundwater's electric conductivity and water temperature. The greenhouse complexes are mainly situated along rivers to secure water resources for water curtain cultivation. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. As a result of analyzing the electric conductivity and water temperature, the following differences were found in the observed characteristics by region. 1) The electric conductivity and water temperature of the riverside area, where the permeability is high and close to rivers, showed a constant pattern of annual changes due to the influence of river flow and precipitation. 2) The flat land in general agricultural areas showed general characteristics of bedrock observation in the case of water temperature. Still, it seemed more affected by the surrounding well's water use and water quality. The electric conductivity did not show any particular trend and was influenced by the surrounding environment according to the location of each point.

Development of groundwater level monitoring and forecasting technique for drought analysis (I) - Groundwater drought monitoring using standardized groundwater level index (SGI) (가뭄 분석을 위한 지하수위 모니터링 및 예측기법 개발(I) - 표준지하수지수(SGI)를 이용한 지하수 가뭄 모니터링)

  • Lee, Jeongju;Kang, Shinuk;Jeong, Jihye;Chun, Gunil
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.1011-1020
    • /
    • 2018
  • This study aims to develop a drought monitoring scheme based on groundwater which can be exploit for water supply under drought stress. In this context, groundwater level can be used as a proxy for better understanding the temporal evolution of drought state. First, kernel density estimator is presented in the monthly groundwater level over the entire national groundwater stations. The estimated cumulative distribution function is then utilized to map the monthly groundwater level into the standardized groundwater level index (SGI). The SGI for each station was eventually converted into the index for major cities through the Thiessen polygon approach. We provide a drought classification for a given SGI to better characterize the degree of drought condition. Ultimately, we conclude that the proposed monitoring framework enables a more reliable estimation of the drought stress, especially for a limited water supply area.