• 제목/요약/키워드: Regional climate model

검색결과 314건 처리시간 0.028초

변동경향을 보존하는 편의보정기법을 이용한 우리나라의 평균 및 극한기온 모의결과 보정 (Correction of Mean and Extreme Temperature Simulation over South Korea Using a Trend-preserving Bias Correction Method)

  • 정현채;서명석
    • 대기
    • /
    • 제25권2호
    • /
    • pp.205-219
    • /
    • 2015
  • In this study, the simulation results of temperature by regional climate model (Reg- CM4) over South Korea were corrected by Hempel et al. (2013)'s method (Hempel method), and evaluated with the observation data of 50 stations from Korea Meteorological Administration. Among the 30 years (1981~2010) of simulation data, 20 years (1981~2000) of simulation data were used as a training data, and the remnant 10 years (2001~2010) data were used for the evaluation of correction. In general, the Hempel method and parametric quantile mapping show a reasonable correction both in mean and extreme climate of temperature. As the results, the systematic underestimation of mean temperature was greatly reduced after bias correction by Hempel method. And the overestimation of extreme climate, such as the number of TN5% and freezing day, was significantly recovered. In addition to that, the Hempel method better preserved the temporal trend of simulated temperature than other bias correction methods, such as the quantile mapping. However, the overcorrection of the extreme climate related to the upper quantile, such as TX5% and hot days, resulted in the exaggeration of the simulation errors. In general, the Hempel method can reduce the systematic biases embedded in the simulation results preserving the temporal trend but it tends to overcorrect the non-linear biases, in particular, extreme climate related to the upper percentile.

조직의 안전분위기가 항공교통관제사의 안전행동에 미치는 영향 (The Effect of organizational safety climate at Air Traffic controller's safety behavior)

  • 이효상;박진우
    • 한국항공운항학회지
    • /
    • 제27권1호
    • /
    • pp.10-19
    • /
    • 2019
  • As a domestic aviation industry has been growing continuously, the air traffic volume of en-route has increased rapidly to 2,300 a day. According to developing air navigation system including Performance Based Navigation(PBN), the manner of flights has diversified. Consequentially task of air traffic service has been increasing more and more and the organization of Air Traffic Service(ATC) established one Air traffic management Office(ATMO), extends to 3 Regional organization(Seoul, Busan, Jeju) and a number of air traffic controller exceeds 600. The purpose of this research is going to investigate the relationship between organization's safety climate and air traffic controller's safety behavior, In pursuing above, previous studies related to co-worker and supervisor's safety climate were examined for literature review. Based on this previous studies, research model was constructed. Hypothesis was verified by effect. Data from 209 samples was employed for final survey. The main results show that co-worker and supervisor's safety climate were meaningful factors to effect perceived Safety Behavior and safety knowledge, safety motivation were significantly and positive related to safety compliance.

토양-식생-대기 이송모형내의 육지수문모의 개선 (Improvements to the Terrestrial Hydrologic Scheme in a Soil-Vegetation-Atmosphere Transfer Model)

  • 최현일;지홍기;김응석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.529-534
    • /
    • 2009
  • Climate models, both global and regional, have increased in sophistication and are being run at increasingly higher resolutions. The Land Surface Models (LSMs) coupled to these climate models have evolved from simple bucket models to sophisticated Soil-Vegetation-Atmosphere Transfer (SVAT) schemes needed to support complex linkages and processes. However, some underpinnings of terrestrial hydrologic parameterizations so crucial in the predictions of surface water and energy fluxes cause model errors that often manifest as non-linear drifts in the dynamic response of land surface processes. This requires the improved parameterizations of key processes for the terrestrial hydrologic scheme to improve the model predictability in surface water and energy fluxes. The Common Land Model (CLM), one of state-of-the-art LSMs, is the land component of the Community Climate System Model (CCSM). However, CLM also has energy and water biases resulting from deficiencies in some parameterizations related to hydrological processes. This research presents the implementation of a selected set of parameterizations and their effects on the runoff prediction. The modifications consist of new parameterizations for soil hydraulic conductivity, water table depth, frozen soil, soil water availability, and topographically controlled baseflow. The results from a set of offline simulations are compared with observed data to assess the performance of the new model. It is expected that the advanced terrestrial hydrologic scheme coupled to the current CLM can improve model predictability for better prediction of runoff that has a large impact on the surface water and energy balance crucial to climate variability and change studies.

  • PDF

공간 패널 회귀모형을 이용한 양파 생산량 추정 (Onion yield estimation using spatial panel regression model)

  • 최성천;백장선
    • 응용통계연구
    • /
    • 제29권5호
    • /
    • pp.873-885
    • /
    • 2016
  • 노지에서 재배되는 양파 생산량은 기후환경에 의하여 영향을 받으며, 특정 지역에서 많이 생산되는 지역적인 특성을 가지고 있다. 따라서 생산량 예측시 기상과 지역을 동시에 고려하는 접근이 필요하다. 본 논문에서는 공간 패널 회귀모형을 이용하여 기상변화에 따른 생산량을 추정하였다. 양파 주산지 13곳에 대한 2006년부터 2015년까지의 기상 패널자료를 사용하여, 공간시차를 반영한 공간자기회귀(spatial autoregressive)모형을 사용하였다. 공간가중치 행렬은 임계치 설정방법과 최근거리 설정방법으로 나누어 분석하여, 최근 3곳까지 거리 설정방법을 사용한 모형이 최종 모형으로 선택되었으며, 자기상관성이 유의함을 보였다. 하우스만 검정을 통해 채택된 확률효과모형으로 분석한 결과 누적일조시간(1월), 평균상대습도(4월), 평균최저기온(6월), 누적강수량(11월) 등이 양파 생산량 예측에 유의한 변수로 나타났다.

고해상도 격자 기후자료 내 이상 기후변수 수정을 위한 통계적 보간법 적용 (Application of a Statistical Interpolation Method to Correct Extreme Values in High-Resolution Gridded Climate Variables)

  • 정여민;음형일
    • 한국기후변화학회지
    • /
    • 제6권4호
    • /
    • pp.331-344
    • /
    • 2015
  • A long-term gridded historical data at 3 km spatial resolution has been generated for practical regional applications such as hydrologic modelling. However, overly high or low values have been found at some grid points where complex topography or sparse observational network exist. In this study, the Inverse Distance Weighting (IDW) method was applied to properly smooth the overly predicted values of Improved GIS-based Regression Model (IGISRM), called the IDW-IGISRM grid data, at the same resolution for daily precipitation, maximum temperature and minimum temperature from 2001 to 2010 over South Korea. We tested various effective distances in the IDW method to detect an optimal distance that provides the highest performance. IDW-IGISRM was compared with IGISRM to evaluate the effectiveness of IDW-IGISRM with regard to spatial patterns, and quantitative performance metrics over 243 AWS observational points and four selected stations showing the largest biases. Regarding the spatial pattern, IDW-IGISRM reduced irrational overly predicted values, i. e. producing smoother spatial maps that IGISRM for all variables. In addition, all quantitative performance metrics were improved by IDW-IGISRM; correlation coefficient (CC), Index Of Agreement (IOA) increase up to 11.2% and 2.0%, respectively. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were also reduced up to 5.4% and 15.2% respectively. At the selected four stations, this study demonstrated that the improvement was more considerable. These results indicate that IDW-IGISRM can improve the predictive performance of IGISRM, consequently providing more reliable high-resolution gridded data for assessment, adaptation, and vulnerability studies of climate change impacts.

DNDC 지역별 구동을 위한 입력자료 생성 도구 개발 (Development of an Input File Preparation Tool for Offline Coupling of DNDC and DSSAT Models)

  • 현신우;황우성;유희진;김광수
    • 한국농림기상학회지
    • /
    • 제23권1호
    • /
    • pp.68-81
    • /
    • 2021
  • 농업 생태계는 주요 온실가스의 배출원 중 하나로, 농경지에서의 온실가스 배출량을 최소화하면서 최적의 수량을 얻기 위한 기후변화 적응옵션을 도출하기 위해서는, 상세한 공간적 규모에서 여러 모형들을 연계하여 구동하는 것이 유리하다. 본 연구에서는 DSSAT 모형과 DNDC 모형을 연계하여 상세한 공간 규모에서 기후변화 영향평가를 수행할 수 있도록 지원하기 위한 도구를 개발하고자 하였다. 객체 지향 언어인 R과 C++을 사용하여 DNDC 모형의 격자형 입력자료를 생성하기 위한 DRIFT (DNDC Regional Input File Tool)을 구현하였다. 기후변화 조건에서 격자별 작물 생육모의를 위해 생성된 DSSAT 모형의 입력자료 및 출력자료를 사용하여 DNDC 모형의 입력자료를 생성하였다. 생성된 입력자료를 사용하여 미래 기후변화 조건에서의 온실가스 배출량을 모의하였다. 입력자료를 생성하는 시간은 격자 지점의 수에 비례하여 증가하였다. 그 중, DSSAT 모형의 담수 깊이 자료를 DNDC 모형의 담수 기간으로 변환하는 과정에서 시간이 비교적 오래 걸렸으나, 그 외의 입력자료를 생성하는 데에는 짧은 시간만이 소요되었다. 본 연구에서는 비교적 적은 지점을 대상으로 하였으나, 대량의 자료를 처리하고자 할 경우 일부 계산과정을 병렬화함으로써 구동시간을 줄일 필요가 있을 것이다. 이후 다른 모형들에 대한 확장을 통해 모형 간 연계를 위한 입력자료 생성에 소요되는 시간을 줄일 수 있을 것이다.

지역적 민감도 분석을 이용하여 계절성을 고려한 수문 모형 보정 기법 개발 (A Development of Hydrological Model Calibration Technique Considering Seasonality via Regional Sensitivity Analysis)

  • 이예린;유재웅;김경탁;권현한
    • 대한토목학회논문집
    • /
    • 제43권3호
    • /
    • pp.337-352
    • /
    • 2023
  • 일반적으로 강우-유출모형의 매개변수 최적화는 가용 자료 전체를 대상으로 수행하여 고유의 매개변수 집합을 활용한다. 그러나, 계절에 따른 강수량의 편차가 큰 국내의 기후 특성과 더불어 기후변화로 인하여 계절성에 따른 편차 및 변동성이 증가할 것으로 전망되고 있어, 물 수요자들에 대한 안정적인 공급을 위한 장기간의 계획에서 계절성을 반영한 매개변수 추정은 효율적인 물배분에 중요한 요소라 할 수 있다. 본 연구에서는 기후특성에 따른 강우-유출모형의 변동성을 분석하기 위하여 소양강댐 유역을 대상으로 GR4J 강우-유출모형을 활용한 지역적 민감도 분석을 수행하였으며, 산출된 민감도 분석 결과와 기상자료를 결합하여 SOM을 활용해 군집화하였다. 이를 통해 계절 분리를 수행하고 각 계절의 특징을 분석하여 강우-유출모형의 보정 기법을 개발하였으며, 통계적 지표를 이용하여 성능을 평가하였다. 결과적으로 비교적 유량이 적은 Cold 기간의 모형 성능이 개선되는 것을 확인할 수 있었다. 이는 몬순기후 등 강수편차가 큰 지역을 대상으로 수문모형의 성능 및 예측도를 높일 수 있을 것으로 판단된다.

시베리아 산불이 2003년 봄철 동아시아 오존 농도에 끼치는 영향 연구 (A study of the Effects of Siberian Wildfires on Ozone Concentrations over East Asia in Spring 2003)

  • 박록진;정재인;윤대옥
    • 대기
    • /
    • 제19권3호
    • /
    • pp.227-235
    • /
    • 2009
  • Global climate warming induced by long-lived greenhouse gases is expected to cause increases in wildfire frequencies and intensity in boreal forest regions of mid- and high-latitudes in the future. Siberian forest fires are one of important sources for air pollutants such as ozone and aerosols over East Asia. Thus an accurate quantification of forest fire influences on air quality is crucial, in particular considering its higher occurrences expected under the future warming climate conditions. We here use the 3-D global chemical transport model (GEOS-Chem) with the satellite constrained fire emissions to quantify Siberian fire effects on ozone concentrations in East Asia. Our focus is mainly on spring 2003 when the largest fires occurred over Siberia in the past decade. We first evaluated the model by comparing to the EANET observations. The model reproduced observed ozone concentrations in spring 2003 with the high $R^2$ of 0.77 but slightly underestimated by 20%. Enhancements in seasonal mean ozone concentrations were estimated from the difference in simulations with and without Siberian fires and amounted up to 24 ppbv over Siberia. Effects of Siberian fires also resulted in 3-10 ppbv incresases in Korea and Japan. These increases account for about 5-15% of the ozone air quality standard of 60 ppbv in Korea, indicating a significant effect of Siberian fires on ozone concentrations. We found however that possible changes in regional meteorology due to Siberian fires may also affect air quality. Further study on the interaction between regional air quality and meteorology is necessary in the future.

Climate Change Scenario Generation and Uncertainty Assessment: Multiple variables and potential hydrological impacts

  • 권현한;박래건;최병규;박세훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.268-272
    • /
    • 2010
  • The research presented here represents a collaborative effort with the SFWMD on developing scenarios for future climate for the SFWMD area. The project focuses on developing methodology for simulating precipitation representing both natural quasi-oscillatory modes of variability in these climate variables and also the secular trends projected by the IPCC scenarios that are publicly available. This study specifically provides the results for precipitation modeling. The starting point for the modeling was the work of Tebaldi et al that is considered one of the benchmarks for bias correction and model combination in this context. This model was extended in the framework of a Hierarchical Bayesian Model (HBM) to formally and simultaneously consider biases between the models and observations over the historical period and trends in the observations and models out to the end of the 21st century in line with the different ensemble model simulations from the IPCC scenarios. The low frequency variability is modeled using the previously developed Wavelet Autoregressive Model (WARM), with a correction to preserve the variance associated with the full series from the HBM projections. The assumption here is that there is no useful information in the IPCC models as to the change in the low frequency variability of the regional, seasonal precipitation. This assumption is based on a preliminary analysis of these models historical and future output. Thus, preserving the low frequency structure from the historical series into the future emerges as a pragmatic goal. We find that there are significant biases between the observations and the base case scenarios for precipitation. The biases vary across models, and are shrunk using posterior maximum likelihood to allow some models to depart from the central tendency while allowing others to cluster and reduce biases by averaging. The projected changes in the future precipitation are small compared to the bias between model base run and observations and also relative to the inter-annual and decadal variability in the precipitation.

  • PDF

환경규제가 지역경제에 미치는 파급효과 분석 (Impact Analysis on the Regional Economy Affected by Environmental Regulations)

  • 김호언
    • 지역연구
    • /
    • 제15권3호
    • /
    • pp.1-13
    • /
    • 1999
  • Since the 1990's, the most important environmental issue on the earth is characterized by "global worming problem". The United Nations Framework Convention on Climate Change (UNFCCC) plays an significant role to solve this problem on a worldwide scale. The main purpose of this paper is to analyse the impact of $CO_2$ reduction on the Daegu regional economy through 1995 regional input-output coefficients derived from the 1995 national input coefficients table by using non-survey method. The sectoral impacts on output, income, and employment were computed under the decline-unequalized assumption in final demand influenced by $CO_2$ reduction. This article has six main sections. Section 1 is an introduction to this paper. Section 2 explains briefly the derivation method of the regional technical coefficients. Section 3 describes the model building through input-output multipliers. In section 4 regional data on output, income, employment and final demand are computed to estimate the regional impacts. Section 5 deals with impact analysis on the Daegu economy. Section 6 contains a brief summary and concludintg remarks. The research findings of this study can be summarized as follows. In 1995, under the assumption of 10% decrease on an average in final demand sectors, the economy of the region studied decreased \3600 billion of output, ₩1114 billion of income, and 49919 man-years of employment. The percent ratios of each value to the total showed 9.4%, 9.7%, and 9.2%, respectively. The dominant sectors associated with impact analysis within the region are chemicals and chemical products, paper, printing and publishing, and textiles and leather, etc; nevertheless, the least dominant sector is non-metallic mineral products. products.

  • PDF