• Title/Summary/Keyword: Region-based segmentation

Search Result 559, Processing Time 0.029 seconds

AAW-based Cell Image Segmentation Method (적응적 관심윈도우 기반의 세포영상 분할 기법)

  • Seo, Mi-Suk;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.99-106
    • /
    • 2007
  • In this paper, we present an AAW(Adaptive Attention Window) based cell image segmentation method. For semantic AAW detection we create an initial Attention Window by using a luminance map. Then the initial AW is reduced to the optimal size of the real ROI(Region of Interest) by using a quad tree segmentation. The purpose of AAW is to remove the background and to reduce the amount of processing time for segmenting ROIs. Experimental results show that the proposed method segments one or more ROIs efficiently and gives the similar segmentation result as compared with the human perception.

Image Retrieval Using Entropy-Based Image Segmentation (엔트로피에 기반한 영상분할을 이용한 영상검색)

  • Jang, Dong-Sik;Yoo, Hun-Woo;Kang, Ho-Jueng
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.333-337
    • /
    • 2002
  • A content-based image retrieval method using color, texture, and shape features is proposed in this paper. A region segmentation technique using PIM(Picture Information Measure) entropy is used for similarity indexing. For segmentation, a color image is first transformed to a gray image and it is divided into n$\times$n non-overlapping blocks. Entropy using PIM is obtained from each block. Adequate variance to perform good segmentation of images in the database is obtained heuristically. As variance increases up to some bound, objects within the image can be easily segmented from the background. Therefore, variance is a good indication for adequate image segmentation. For high variance image, the image is segmented into two regions-high and low entropy regions. In high entropy region, hue-saturation-intensity and canny edge histograms are used for image similarity calculation. For image having lower variance is well represented by global texture information. Experiments show that the proposed method displayed similar images at the average of 4th rank for top-10 retrieval case.

Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation

  • Kang, Sung-Won;Lee, Woo-Jin;Choi, Soon-Chul;Lee, Sam-Sun;Heo, Min-Suk;Huh, Kyung-Hoe;Kim, Tae-Il;Yi, Won-Jin
    • Imaging Science in Dentistry
    • /
    • v.45 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • Purpose: We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). Materials and Methods: The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. Results: VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). Conclusion: It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

A Study On Watershed Region Extraction Based On Edge Information (에지 정보를 이용한 watershed 영역 추출에 관한 연구)

  • 이원효;조상현;설경호;주동현;김두영
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.449-452
    • /
    • 2003
  • This paper propose a extracting method of the region for image using segmentation and edge information. First propose algorithm extract information using canny edge detector and the image was divided by watershed segmentation. And it extract the mage with edge information by merging region. Finally we compare the proposed method with levelset method. In the result proposed method not only extract the image with accurate region but also reduce operation time.

  • PDF

Three-Dimensional Visualization of Medical Image using Image Segmentation Algorithm based on Deep Learning (딥 러닝 기반의 영상분할 알고리즘을 이용한 의료영상 3차원 시각화에 관한 연구)

  • Lim, SangHeon;Kim, YoungJae;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.468-475
    • /
    • 2020
  • In this paper, we proposed a three-dimensional visualization system for medical images in augmented reality based on deep learning. In the proposed system, the artificial neural network model performed fully automatic segmentation of the region of lung and pulmonary nodule from chest CT images. After applying the three-dimensional volume rendering method to the segmented images, it was visualized in augmented reality devices. As a result of the experiment, when nodules were present in the region of lung, it could be easily distinguished with the naked eye. Also, the location and shape of the lesions were intuitively confirmed. The evaluation was accomplished by comparing automated segmentation results of the test dataset to the manual segmented image. Through the evaluation of the segmentation model, we obtained the region of lung DSC (Dice Similarity Coefficient) of 98.77%, precision of 98.45%, recall of 99.10%. And the region of pulmonary nodule DSC of 91.88%, precision of 93.05%, recall of 90.94%. If this proposed system will be applied in medical fields such as medical practice and medical education, it is expected that it can contribute to custom organ modeling, lesion analysis, and surgical education and training of patients.

Video Segmentation Using New Combined Measure (새로운 결합척도를 이용한 동영상 분할)

  • 최재각;이시웅;남재열
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.51-62
    • /
    • 2003
  • A new video segmentation algorithm for segmentation-based video coding is proposed. The method uses a new criterion based on similarities in both motion and brightness. Brightness and motion information are incorporated in a single segmentation procedure. The actual segmentation is accomplished using a region-growing technique based on the watershed algorithm. In addition, a tracking technique is used in subsequent frames to achieve a coherent segmentation through time. Simulation results show that the proposed method is effective in determining object boundaries not easily found using the statistic criterion alone.

Building Recognition using Image Segmentation and Color Features (영역분할과 컬러 특징을 이용한 건물 인식기법)

  • Heo, Jung-Hun;Lee, Min-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.82-91
    • /
    • 2013
  • This paper proposes a building recognition algorithm using watershed image segmentation algorithm and integrated region matching (IRM). To recognize a building, a preprocessing algorithm which is using Gaussian filter to remove noise and using canny edge extraction algorithm to extract edges is applied to input building image. First, images are segmented by watershed algorithm. Next, a region adjacency graph (RAG) based on the information of segmented regions is created. And then similar and small regions are merged. Second, a color distribution feature of each region is extracted. Finally, similar building images are obtained and ranked. The building recognition algorithm was evaluated by experiment. It is verified that the result from the proposed method is superior to color histogram matching based results.

Region Merging Method Preserving Object Boundary for Color Image Segmentation (칼라 영상 분할을 위한 경계선 보존 영역 병합 방법)

  • 유창연;곽내정;김영길;안재형
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.3
    • /
    • pp.319-326
    • /
    • 2004
  • In this paper, we propose color image segmentation by region merging method preserving the boundary of an object. The proposed method selects initial region by using quantized image's index map after vector quantizing an original image. After then, we merge regions by applying boundary restricted factor in order to consider the boundary of an object in HSI color space. Also we merge the regions in RGB color space for non-processed regions in HSI color space. And we reduce processing time by decreasing iterative process in region merging algorithm. Experimental results have demonstrated the superiority in region's segmentation results and processing time for various images.

  • PDF

License Plate Recognition System Using Artificial Neural Networks

  • Turkyilmaz, Ibrahim;Kacan, Kirami
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.163-172
    • /
    • 2017
  • A high performance license plate recognition system (LPRS) is proposed in this work. The proposed LPRS is composed of the following three main stages: (i) plate region determination, (ii) character segmentation, and (iii) character recognition. During the plate region determination stage, the image is enhanced by image processing algorithms to increase system performance. The rectangular license plate region is obtained using edge-based image processing methods on the binarized image. With the help of skew correction, the plate region is prepared for the character segmentation stage. Characters are separated from each other using vertical projections on the plate region. Segmented characters are prepared for the character recognition stage by a thinning process. At the character recognition stage, a three-layer feedforward artificial neural network using a backpropagation learning algorithm is constructed and the characters are determined.

Fast hierarchical image segmentation based on mathematical morphology (수리형태론에 기반한 고속 계층적 영상분할)

  • 김해룡;홍원학;김남철
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.10
    • /
    • pp.38-49
    • /
    • 1996
  • In this paper, we propose a fast hierarchical image segmentation using mathematical morphology. The proposed segmentation method is composed of five basic steps; multi-thresholding, open-close by reconstructing, mode operation, marker extraction, and region decision. In the multi-thresholding, an input image is simplified by Lloyd clustering algorithm. The multi-thresholded image then is more simplified by open-close by reconstruction and mode operating. In the region decision, to which region each uncertainty pixel belongs finally is decided by a watershed algorithm. Experimental results show that the quality of the segmentation results by the proposed method is not inferior to that by the conventional method and the average times elapsed by the proposed method can be reduced by one tghird of those elapsed by the conventional method.

  • PDF