영상분할은 관심대상이 되는 물체의 영역을 추출하기 위한 객체기반 영상분류의 전처리과정으로서 원격탐사 영상분석에서 그 중요성 날로 커지고 있다. 본 연구에서는 개선된 SRG(Seeded Region Growing) 기법과 영역병합과정을 이용하여 고해상도 영상분할을 위한 새로운 방법을 제안한다. 이를 위해 우선 QuickBird 융합영상에서 추출된 다중분광 에지정보를 이용하여 초기 시드포인트를 자동으로 추출하였다. 추출된 시드포인트에 영상의 기하학적인 정보와 분광정보를 반영할 수 있는 개선된 SRG 기법을 적용하여 초기 영상 분할을 수행하였다. 최종적으로 앞선 초기분할 결과 향상을 위해 분할된 영역의 평균분광정보를 활용하여 영역병합을 수행하여 최종분할결과를 도출하였다. 제안된 기법의 효율성을 평가하기 위해 무감독 영상분할 평가측정치를 이용하여 정확도 평가를 수행하였다. 실험결과 제안한 기법은 고해상도 영상분할에 유용하게 적용될 수 있으리라 판단된다.
We present a two step approach for estimating the motionand sturcture parameters from region orrespondences in two frames. Given four or more region corresondences on the same planar surface, the motion and planar orientation parameters are first linearly estimated based on second-order approximation of the displacement field of the image plane. Then, using this linear estimate as an initial guess, a nonlinear estimate is obtained by iteratively minimizing an objective function using the exact experession of the displacement field. The objective function involves the centroids of corresponding regions and relationships among low-order moments. Through simulations, we show that the two-step region-based approach gives robust estimates. The performance of nonlinear region-based estimation is compared with that of linear region-based and point-based methods. Experimental results for two image pairs, on esynthetic and one real, ar epresented to show the practical applicability of our approach.
Blur identification is the first and the most important step of restoring images. Edge region of the image usually conveys important information of blur parameters. In this paper we propose a region-based edge extraction method for estimating point-spread-function (PSF). As a result, the proposed method can detect the starting and the ending points of a step response, and provides the PSF parameters to the restoration process.
본 논문에서는 인간 시각 체계에 기반하여 주관적 화질의 열화없이 전송 정보량을 효과적으로 줄일 수 있고, 또한 전송 정보량을 조절할 수 있는 영역기반 초적속 부호화에 적합한 새로운 계층적 영상 분할 알고리즘을 제한한다. 제안한 알고리즘은 각 단계에서 수리 형태학에 기반한 영상 분할과 인간 시각 체계를 고려한 영역 볍합 고조로 이루어져 있다. 영상분할은 3단계의 계층적 구조로 이루어져 있으며, 영역 병합은 각 단계에서 인간 시각 체계에 기반하여 인간 시각이 구분할 수 없는 두 인접 영역의 쌍들을 추출한 후 영역 병합을 수행한다. 이때 인간 시각 체계에 기반하여 병합할 영역을 추출하고 제안한 병합을 우선 순위 함수에 의한 병합 우선 순위에 따른 영역 볍합ㅇ르 차례로 수행하여 영역의 수를 효과적으로 줄임으로써 영역기반 초저속 부호화시 과다한 윤곽선 정보로 인한 병목현상을 개선할 수 있다. 그리고 각 단계에서의 영역 병합시 정보량 조절 요소 값에 따라 전송 정보량을 조절할 수 있어 기존의 방법보다 유연한 분할 구조를 나타낸다. 실험을 통하여 제안한 방법은 기존의 방법보다 PSNR 및 주관적 화질은 유사하나, 전송할 윤곽선 정보는 상당히 줄일 수 있어 영역기반 초적속 부호화를 위한 효율적 영상 분할 알고리즘임을 알 수 있다.
IEIE Transactions on Smart Processing and Computing
/
제6권4호
/
pp.229-236
/
2017
This paper presents an efficient object-based color image-retrieval algorithm that is suitable for the classification and retrieval of images from small to mid-scale datasets, such as images in PCs, tablets, phones, and cameras. The proposed method first finds salient regions by using regional feature vectors, and also finds several dominant colors in each region. Then, each salient region is partitioned into small sub-blocks, which are assigned 1 or 0 with respect to the number of pixels corresponding to a dominant color in the sub-block. This gives a binary map for the dominant color, and this process is repeated for the predefined number of dominant colors. Finally, we have several binary maps, each of which corresponds to a dominant color in a salient region. Hence, the binary maps represent the spatial distribution of the dominant colors in the salient region, and the union (OR operation) of the maps can describe the approximate shapes of salient objects. Also proposed in this paper is a matching method that uses these binary maps and which needs very few computations, because most operations are binary. Experiments on widely used color image databases show that the proposed method performs better than state-of-the-art and previous color-based methods.
본 논문은 퍼지 C-평균 분류기와 적응적 블록 분할을 사용한 역광 영역 검출과 공간 적응적 대비 확장을 사용한 역광 영역 개선 방법을 제안한다. 제안된 방법은 퍼지 이론에 의해 계산된 최적의 임계값을 기반으로 적응적 가변블록 분할을 사용하여 역광 영상을 어두운 역광 영역과 밝은 배경 영역으로 구분한다. 가변블록에 의한 블록화 현상을 없애기 위해 유도 필터(guided filter)를 사용하여 역광 영역을 객체 영역에 적합하게 세분화한다. 마지막으로 검출된 역광 영역은 공간 적응적으로 대비가 확장되어 조도를 개선한다. 제안된 방법은 최적의 임계값을 사용하여 영상을 분할하기 때문에 입력 영상에 따라 적응적으로 영역을 분할하고 저조도 영역을 개선하며, 사용자의 별도의 설정이 없이 입력 영상에 따라 자동적 역광 영상 개선이 가능하다. 실험 결과를 통해 제안된 방법이 기존 방법보다 역광 영역에 존재하는 피사체의 정보를 효과적으로 개선할 수 있으며, 복잡한 분할 방법을 사용하지 않고 빠르게 역광 영역을 검출할 수 있음을 보인다.
High-resolution satellite images are used in the fields of mapping, natural disaster forecasting, agriculture, ocean-based industries, infrastructure, and environment, and there is a progressive increase in the development and demand for the applications of high-resolution satellite images. Users of the satellite images desire accurate quality of the provided satellite images. Moreover, the distinguishability of each image captured by an actual satellite varies according to the atmospheric environment and solar angle at the captured region, the satellite velocity and capture angle, and the system noise. Hence , NIIRS must be measured for all captured images. There is a significant deficiency in professional human resources and time resources available to measure the NIIRS of few hundred images that are transmitted daily. Currently, NIIRS is measured every few months or even few years to assess the aging of the satellite as well as to verify and calibrate it [3]. Therefore, we develop an algorithm that can measure the national image interpretability rating scales (NIIRS) of a typical satellite image rather than an artificial target satellite image, in order to automatically assess its quality. In this study, the criteria for automatic edge region extraction are derived based on the previous works on manual edge region extraction [4][5], and consequently, we propose an algorithm that can extract the edge region. Moreover, RER and H are calculated from the extracted edge region for automatic edge region extraction. The average NIIRS value was measured to be 3.6342±0.15321 (2 standard deviations) from the automatic measurement experiment on a typical satellite image, which is similar to the result extracted from the artificial target.
The mainly used technique to correct satellite images with geometric distortion is to develop a mathematical relationship between pixels on the image and corresponding points on the ground. Polynomial models with various transformations have been designed for defining the relationship between two coordinate systems. GCP based geometric correction has peformed overall plane to plane mapping. In the overall plane mapping, overall structure of a scene is considered, but local variation is discarded. The Region with highly variant height is rectified with distortion on overall plane mapping. To consider locally variable region in satellite image, TIN-based rectification on a satellite image is proposed in this paper. This paper describes the relationship between GCP distribution and rectification model through experimental result and analysis about each rectification model. We can choose a geometric correction model as the structural characteristic of a satellite image and the acquired GCP distribution.
본 논문에서는, 영역 기반 영상 검색 시스템인 FRIP(Finding Region In the Pictures)을 제안한다. 이 시스템은 크게 색상과 방향성 질감 성분을 결합하는 굳건한 영상 분할 알고리즘과, 분할된 각 영역으로부터 특징 정보들을 추출하고 검색하는 3개의 알고리즘을 포함하고 있다. 영역 분할을 위해서, 영상으로부터 확장 및 이동된 색상 좌표계와, 방향성 질감 성분을 추출하여, 본 시스템에서 제안하는 원형필터에 적용시킨다. 원형 필터에 의해, 영역의 경계선이 자연스럽게 유지 될 수 있고, 또한 일반적인 영역 병합 알고리즘에 의해 병합되지 않던 의미 없는 줄무늬나 작은 점 영역들도 몸체 영역으로 병합 될 수 있다. 영상을 분할한 후에, 효율적인 저장 공간의 관리와 특징 정보 계산 시간을 줄이기 위하여 각 영역으로부터 최적의 특징 정보만을 추출하고 이것을 색인화 하여 데이타베이스에 저장하고 검색에 사용한다. 사용자 인터페이스를 위해서는, 영역의 '색상', '크기', '모양', '위치'와 같은 4개의 질의 조건을 주고, 사용자의 요구에 따라 정합 점수를 계산한 뒤, 그 점수에 따라 상위 검색 결과를 보여 주도록 설계되었다.
본 논문에서는 웨이브릿 변환 영역에서 추출된 특징을 기반으로 한 내용기반 영상검색 방법에 관해 연구하였다. 기존의 웨이브릿 기반의 방법에서의 문제점인 특징벡터의 크기를 줄이기 위해 웨이브릿 계수의 영역별 에너지 값을 이용하였으며, 대상물의 이동, 회전, 크기 변화에 영향을 받지 않는 모멘트 특성을 이용한 검색방법을 제안하였다. 본 방법은 특징벡터의 크기를 줄이고, 기존의 특징벡터와 비교해서 검색시간을 단축하면서 분류검색의 효율성을 향상시켰다. 영역기반 영상검색 기능을 제공하기 위해 영상분할 방법에 대해 연구하였으며, 불규칙한 광원에 의한 영향을 최소화할 수 있는 영상분할 방법을 제안하였다 영상분할은 영역병합을 이용하였고, 병합후보영역은 웨이브릿 변환의 고주파 대역 에너지 값을 이용하여 선정하였다 분할된 영역정보를 이용하여 칼라와 질감, 모양 특징벡터를 구성하여 영역기반 영상검색을 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.