• Title/Summary/Keyword: Region classification

Search Result 1,021, Processing Time 0.023 seconds

A study on the classifying vehicles for traffic flow analysis using LiDAR DATA

  • Heo J.Y.;Choi J.W.;Kim Y.I.;Yu K.Y.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.633-636
    • /
    • 2004
  • Airborne laser scanning thechnology has been studied in many applications, DSM(Digital Surface Model) development, building extraction, 3D virtual city modeling. In this paper, we will evaluate the possibility of airborne laser scanning technology for transportation application, especially for recognizing moving vehicles on road. First, we initially segment the region of roads from all LiDAR DATA using the GIS map and intensity image. Secondly, the segmented region is divided into the roads and vehicles using the height threshold value of local based window. Finally, the vehicles will be classified into the several types of vehicles by MDC(Minimum Distance Classification) method using the vehicle's geometry information, height, length, width, etc

  • PDF

Defect Classification of Components for SMT Inspection Machines (SMT 검사기를 위한 불량유형의 자동 분류 방법)

  • Lee, Jae-Seol;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.982-987
    • /
    • 2015
  • The inspection machine in SMT (Surface Mount Technology) line detects the assembly defects such as missing, misalignment, loosing, or tombstone. We propose a new method to classify the defect types of chip components by processing the image of PCB. Two original images are obtained from horizontal lighting and vertical lighting. The image of the component is divided into two soldering regions and one packaging region. The features are extracted by appling the PCA (Principle Component Analysis) to each region. The MLP (Multilayer Perceptron) and SVM (Support Vector Machine) are then used to classify the defect types by learning. The experimental results are presented to show the usefulness of the proposed method.

Coding of remotely sensed satellite image data using region classification and interband correlation (영역 분류 및 대역간 상관성을 이용한 원격 센싱된 인공위성 화상데이타의 부호화)

  • 김영춘;이건일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1722-1732
    • /
    • 1997
  • In this paper, we propose a coding method of remotely sensed satellite image data using region classification and interband correlation. This method classifies each pixel vector consider spectral characteristics. Then we perform the classified intraband VQ to remove spatial (intraband redundancy for a reference band image. To remove interband redundancy effectively, we perform the classified interband prediction for the band images that the high correlation spectrally and perform the classified interband VQ for the remaining band images. Experiments on LANDSAT TM image show that the coding efficiency of the proposed method is better than that of the conventional Gupta's method. Especially, this method removes redundancies effectively for satellite iamge including various geographical objects and for and images that have low interband correlation.

  • PDF

Land Use/Land Cover (LULC) Change in Suburb of Central Himalayas: A Study from Chandragiri, Kathmandu

  • Joshi, Suraj;Rai, Nitant;Sharma, Rijan;Baral, Nishan
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.1
    • /
    • pp.44-51
    • /
    • 2021
  • Rapid urbanization and population growth have caused substantial land use land cover (LULC) change in the Kathmandu valley. The lack of temporal and geographical data regarding LULC in the middle mountain region like Kathmandu has been challenging to assess the changes that have occurred. The purpose of this study is to investigate the changes in LULC in Chandragiri Municipality between 1996 and 2017 using geographical information system (GIS) and remote sensing. Using Landsat imageries of 1996 and 2017, this study analyzed the LULC change over 21 years. The images were classified using the Maximum Likelihood classification method and post classified using the change detection technique in GIS. The result shows that severe land cover changes have occurred in the Forest (11.63%), Built-up areas (3.68%), Agriculture (-11.26%), Shrubland (-0.15%), and Bareland (-3.91%) in the region from 1996 to 2017. This paper highlights the use of GIS and remote sensing in understanding the changes in LULC in the south-west part of Kathmandu valley.

Analyzing the Applicability of Greenhouse Detection Using Image Classification (영상분류에 의한 하우스재배지 탐지 활용성 분석)

  • Sung, Jeung Su;Lee, Sung Soon;Baek, Seung Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.397-404
    • /
    • 2012
  • Jeju where concentrates on agriculture and tourism, conversion of outdoor culture into cultivation under structure happens actively for the purpose of increasing profit so continuous examination on house cultivation area is very important for this region. This paper is to suggest the effective image classification method using high resolution satellite image to detect the greenhouse. We carried out classification of greenhouse using the supervised classification and rule-based classification method about Formosat-2 images. Connecting result of two classification try to find accuracy improvement for greenhouse detection. Results about each classification method were calculated the accuracy by comparing with the result of visual detection. As a result, mahalanobis distance among the supervised methods was resulted in the highest detection. Also, it could be checked that detection accuracy was improved by tying with result of supervised method and result of rule-based classification. Therefore, it was expected that effective detection of greenhouse would be feasible if henceforward further study is performed in the process of connecting supervised classification and rule-based classification.

Facial Expression Classification through Covariance Matrix Correlations

  • Odoyo, Wilfred O.;Cho, Beom-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.505-509
    • /
    • 2011
  • This paper attempts to classify known facial expressions and to establish the correlations between two regions (eye + eyebrows and mouth) in identifying the six prototypic expressions. Covariance is used to describe region texture that captures facial features for classification. The texture captured exhibit the pattern observed during the execution of particular expressions. Feature matching is done by simple distance measure between the probe and the modeled representations of eye and mouth components. We target JAFFE database in this experiment to validate our claim. A high classification rate is observed from the mouth component and the correlation between the two (eye and mouth) components. Eye component exhibits a lower classification rate if used independently.

A New Hybrid Algorithm for Invariance and Improved Classification Performance in Image Recognition

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.85-96
    • /
    • 2020
  • It is important to extract salient object image and to solve the invariance problem for image recognition. In this paper we propose a new hybrid algorithm for invariance and improved classification performance in image recognition, whose algorithm is combined by FT(Frequency-tuned Salient Region Detection) algorithm, Guided filter, Zernike moments, and a simple artificial neural network (Multi-layer Perceptron). The conventional FT algorithm is used to extract initial salient object image, the guided filtering to preserve edge details, Zernike moments to solve invariance problem, and a classification to recognize the extracted image. For guided filtering, guided filter is used, and Multi-layer Perceptron which is a simple artificial neural networks is introduced for classification. Experimental results show that this algorithm can achieve a superior performance in the process of extracting salient object image and invariant moment feature. And the results show that the algorithm can also classifies the extracted object image with improved recognition rate.

Realization for Image Searching Engine with Moving Object Identification and Classification

  • Jung, Eun-Suk;Ryu, Kwang-Ryol;Sclabassi, Robert J.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.301-304
    • /
    • 2007
  • A realization for image searching engine with moving objects identification and classification is presented in this paper. The identification algorithm is applied to extract difference image between input image and the reference image, and the classification is used the region segmentation. That is made the database for the searching engine. The experimental result of the realized system enables to search for human and animal at time intervals to use a surveillant system at inside environment.

  • PDF

Molecular Characterization of Fusarium proliferatum Causing Leaf Blight Symptoms on Chinese chive (Allium tuberosum) in Korea

  • Kim, Kyong-Han;Lee, Seung-Yeol;Back, Chang-Gi;Jung, Hee-Young
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.4
    • /
    • pp.245-249
    • /
    • 2013
  • In 2008, leaf blight symptoms were observed on several Chinese chive farms in Sangju. The Pathogenicity of the isolate was confirmed by artificial inoculation, where the pathogen exhibited a strong pathogenicity toward healthy plants. Morphological classification identified the isolate as from the Fusarium genus. For further analysis, PCR and phylogenetic classification were performed with ITS region and 28S rRNA gene which are commonly used for fungal identification. However, the results provided a poor resolution. To solve this problem, we analyzed translation elongation factor 1-alpha (TEF-$1{\alpha}$) gene. The analyzed results using TEF-$1{\alpha}$ gene indicated that the isolate was F. proliferatum. Therefore, it is assumed that TEF-$1{\alpha}$ gene is important when Fusarium sp. was identified using molecular classification method.

Report on the Development of WHO International Standard Terminologies and International Classification of Traditional Medicine/Western Pacific Regional Office (국제한의학표준용어(WHO IST/WPRO) 및 국제한의학질병분류(ICTM/WPRO)의 개발 현황 보고)

  • Shim, Bum-Sang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.776-780
    • /
    • 2007
  • Recently World Health Organization Western Pacific Regional Office (WHO/WPRO) has developed the WHO International Standard Terminologies on Traditional Medicine in the Western Pacific Region (IST), and is developing WHO International Classification of Traditional Medicine/Western Pacific Regional Office (ICTM/WPRO). Regarding ICTM, WHO/WPRO hoped that it will be incorporated to International Classification of Disease (ICD) 11$^{th}$ edition, published in 2015. The author reports the proceedings of these two standardizations on terminologies and diseases of traditional medicine in East Asia.