GOCI the world first Ocean Color Imager in Geostationary Orbit, which could obtain total 8 images of the same region a day, however, its spatial resolution(500m) is not enough to use for the accurate land application, Super Resolution(SR), reconstructing the high resolution(HR) image from multiple low resolution(LR) images introduced by computer vision field. could be applied to the time-series remotely sensed images such as GOCI data, and the higher resolution image could be reconstructed from multiple images by the SR, and also the cloud masked area of images could be recovered. As the precedent study for developing the efficient SR method for GOCI images, on this research, it reproduced the simulated data under the acquisition process of the remote sensed data, and then the simulated images arc applied to the proposed algorithm. From the proposed algorithm result of the simulated data, it turned out that low resolution(LR) images could be registered in sub-pixel accuracy, and the reconstructed HR image including RMSE, PSNR, SSIM Index value compared with original HR image were 0.5763, 52.9183 db, 0.9486, could be obtained.
Journal of the Korea Institute of Information and Communication Engineering
/
v.13
no.10
/
pp.1987-1996
/
2009
Recently, the color of vehicle license plate has been changed from green to white. Thus the vehicle plate recognition system used for parking management systems, speed and signal violation detection systems should be robust to the both colors. This paper presents a vehicle license plate recognition system, which works on both of green and white plate at the same time. In the proposed system, the image of license plate is taken from a captured vehicle image by using morphological information. In the next, each character region in the license plate image is extracted based on the vertical and horizontal projection of plate image and the relative position of individual characters. Finally, for the recognition process of extracted characters, PCA(Principal Component Analysis) and LDA(Linear Discriminant Analysis) are sequentially utilized. In the experiment, vehicle license plates of both green background and white background captured under irregular illumination conditions have been tested, and the relatively high extraction and recognition rates are observed.
Various facial pose detection and recognition has been a difficult problem. The problem is due to the fact that the distribution of various poses in a feature space is mere dispersed and more complicated than that of frontal faces, This thesis proposes a robust pose-expression-invariant face recognition method in order to overcome insufficiency of the existing face recognition system. First, we apply the TSL color model for detecting facial region and estimate the direction of face using facial features. The estimated pose vector is decomposed into X-V-Z axes, Second, the input face is mapped by deformable template using this vectors and 3D CANDIDE face model. Final. the mapped face is transformed to frontal face which appropriates for face recognition by the estimated pose vector. Through the experiments, we come to validate the application of face detection model and the method for estimating facial poses, Moreover, the tests show that recognition rate is greatly boosted through the normalization of the poses and expressions.
There have been active research activities to use neural networks to analyze OCT images and make medical decisions. One requirement for these approaches to be promising solutions is that the trained network must be generalized to new devices without a substantial loss of performance. In this paper, we use a deep convolutional neural network to distinguish AMD from normal patients. The network was trained using a data set generated from an OCT device. We observed a significant performance degradation when it was applied to a new data set obtained from a different OCT device. To overcome this performance degradation, we propose an image normalization method which performs segmentation of OCT images to identify the retina area and aligns images so that the retina region lies horizontally in the image. We experimentally evaluated the performance of the proposed method. The experiment confirmed a significant performance improvement of our approach.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.12
/
pp.3904-3922
/
2022
As a research hotspot, pedestrian detection has a wide range of applications in the field of computer vision in recent years. However, current pedestrian detection methods have problems such as insufficient detection accuracy and large models that are not suitable for large-scale deployment. In view of these problems mentioned above, a lightweight pedestrian detection and early warning method using a new model called you only look once (Yolov5) is proposed in this paper, which utilizing advantages of Yolov5s model to achieve accurate and fast pedestrian recognition. In addition, this paper also optimizes the loss function of the batch normalization (BN) layer. After sparsification, pruning and fine-tuning, got a lot of optimization, the size of the model on the edge of the computing power is lower equipment can be deployed. Finally, from the experimental data presented in this paper, under the training of the road pedestrian dataset that we collected and processed independently, the Yolov5s model has certain advantages in terms of precision and other indicators compared with traditional single shot multiBox detector (SSD) model and fast region-convolutional neural network (Fast R-CNN) model. After pruning and lightweight, the size of training model is greatly reduced without a significant reduction in accuracy, and the final precision reaches 87%, while the model size is reduced to 7,723 KB.
Deep-learning-based image segmentation is one of the most widely employed lane detection approaches, and it requires a post-process for extracting the key points on the lanes. A general approach for key-point extraction is using a fixed threshold defined by a user. However, finding the best threshold is a manual process requiring much effort, and the best one can differ depending on the target data set (or an image). We propose a novel key-point extraction algorithm that automatically adapts to the target image without any manual threshold setting. In our adaptive key-point extraction algorithm, we propose a line-level normalization method to distinguish the lane region from the background clearly. Then, we extract a representative key point for each lane at a line (row of an image) using a kernel density estimation. To check the benefits of our approach, we applied our method to two lane-detection data sets, including TuSimple and CULane. As a result, our method achieved up to 1.80%p and 17.27% better results than using a fixed threshold in the perspectives of accuracy and distance error between the ground truth key-point and the predicted point.
Moo-Jin Jeong;Joo-Young Oh;Hoon-Hee Park;Joo-Young Lee
Journal of radiological science and technology
/
v.47
no.1
/
pp.29-37
/
2024
This study aims to evaluate the performance of the U-Net based learning model that may vary depending on the histogram equalization algorithm. The subject of the experiment were 17 radiology students of this college, and 1,727 data sets in which the region of interest was set in the thyroid after acquiring ultrasound image data were used. The training set consisted of 1,383 images, the validation set consisted of 172 and the test data set consisted of 172. The equalization algorithm was divided into Histogram Equalization(HE) and Contrast Limited Adaptive Histogram Equalization(CLAHE), and according to the clip limit, it was divided into CLAHE8-1, CLAHE8-2. CLAHE8-3. Deep Learning was learned through size control, histogram equalization, Z-score normalization, and data augmentation. As a result of the experiment, the Attention U-Net showed the highest performance from CLAHE8-2 to 0.8355, and the U-Net and BSU-Net showed the highest performance from CLAHE8-3 to 0.8303 and 0.8277. In the case of mIoU, the Attention U-Net was 0.7175 in CLAHE8-2, the U-Net was 0.7098 and the BSU-Net was 0.7060 in CLAHE8-3. This study attempted to confirm the effects of U-Net, Attention U-Net, and BSU-Net models when histogram equalization is performed on ultrasound images. The increase in Clip Limit can be expected to increase the ROI match with the prediction mask by clarifying the boundaries, which affects the improvement of the contrast of the thyroid area in deep learning model learning, and consequently affects the performance improvement.
Mattes, Malcolm D.;Lee, Jennifer C.;Elnaiem, Sara;Guirguis, Adel;Ikoro, N.C.;Ashamalla, Hani
Radiation Oncology Journal
/
v.32
no.1
/
pp.23-30
/
2014
Purpose: The goal of this study is to determine whether the magnitude of overlap between planning target volume (PTV) and rectum ($Rectum_{overlap}$) or PTV and bladder ($Bladder_{overlap}$) in prostate cancer volumetric-modulated arc therapy (VMAT) is predictive of the dose-volume relationships achieved after optimization, and to identify predictive equations and cutoff values using these overlap volumes beyond which the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) dose-volume constraints are unlikely to be met. Materials and Methods: Fifty-seven patients with prostate cancer underwent VMAT planning using identical optimization conditions and normalization. The PTV (for the 50.4 Gy primary plan and 30.6 Gy boost plan) included 5 to 10 mm margins around the prostate and seminal vesicles. Pearson correlations, linear regression analyses, and receiver operating characteristic (ROC) curves were used to correlate the percentage overlap with dose-volume parameters. Results: The percentage $Rectum_{overlap}$ and $Bladder_{overlap}$ correlated with sparing of that organ but minimally impacted other dose-volume parameters, predicted the primary plan rectum $V_{45}$ and bladder $V_{50}$ with $R^2$ = 0.78 and $R^2$ = 0.83, respectively, and predicted the boost plan rectum $V_{30}$ and bladder $V_{30}$ with $R^2$ = 0.53 and $R^2$ = 0.81, respectively. The optimal cutoff value of boost $Rectum_{overlap}$ to predict rectum $V_{75}$ >15% was 3.5% (sensitivity 100%, specificity 94%, p < 0.01), and the optimal cutoff value of boost $Bladder_{overlap}$ to predict bladder $V_{80}$ >10% was 5.0% (sensitivity 83%, specificity 100%, p < 0.01). Conclusion: The degree of overlap between PTV and bladder or rectum can be used to accurately guide physicians on the use of interventions to limit the extent of the overlap region prior to optimization.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.42
no.4
s.304
/
pp.79-86
/
2005
In this paper, we propose a new LINF(Linear Independent Non-negative Factorization) algorithm for real-time face recognition systea This system greatly consists of the two parts: 1) face extraction part; 2) face recognition part. In the face extraction Part we applied subtraction image, the detection of eye and mouth region , and normalization method, and then in the face recognition Part we used LINF in extracted face candidate region images. The existing recognition system using only PCA(Principal Component Analysis) showed low recognition rates, and it was hard in the recognition system using only LDA(Linear Discriminants Analysis) to apply LDA directly when the training set is small. To overcome these shortcomings, we reduced dimension as the matrix that had non-negative value to be different from former eigenfaces and then applied LDA to the matrix in the proposed system We have experimented using self-organized DAIJFace database and ORL database offered by AT(')T laboratory in Cambridge, U.K. to evaluate the performance of the proposed system. The experimental results showed that the proposed method outperformed PCA, LDA, ICA(Independent Component Analysis) and PLMA(PCA-based LDA mixture algorithm) method within the framework of recognition accuracy.
For the main countries of the Asia-Pacific region, the United States, China and Russia, a situation of "new normality" is emerging. Moreover, for each of the countries, this "new normality" has its own meaning. For the United States, this is an aggravation of the military confrontation with China in the Taiwan Strait. For China, this is an increase in the degree of rivalry with the United States and a slowdown in the pace of economic development with a very high probability of their decline in the future. For Russia, this is an almost complete curtailment of relations with the United States against the background of a special military operation and imposed sanctions. These nuances, in addition to the results of the 20th CPC Congress, will determine the main trends in Sino-American and Sino-Russian relations. It seems that China's attitude towards Russia will not change against the background of the Ukrainian crisis. Beijing will maintain a position of "benevolent neutrality" towards Moscow. At the same time, the balance between "goodwill" and "neutrality" may vary depending on the scope of Sino-Russian cooperation. For example, in the economic sphere, Chinese companies will be afraid to cooperate with Russian partners for fear of secondary sanctions. However, in general, Russia will retain its importance for China as the strongest anti-American pole. In relations with the United States, China will continue to firmly defend its interests, while at the same time not excluding the normalization of relations with Washington in certain areas of cooperation: strategic stability, non-traditional threats, ecology, etc. In general, the decisions of the 20th CPC Congress do not allow us to say either in favor or against the idea of China's readiness to resume dialogue with the United States in the post-congress period. Sino-American relations, as noted above, have their own logic and will probably continue to develop within its framework. However, so are Sino-Russian relations. Within the framework of these logics, Beijing seems to continue to balance between the two vectors of its foreign policy. On the one hand, this is the development of bilateral cooperation with Russia in order to strengthen its own negotiating positions in the confrontation with the United States: military cooperation with an emphasis on joint exercises, political cooperation based on anti-Americanism, economic cooperation with an eye to the risks of secondary sanctions. On the other hand, it is unacceptable for China to recognize the collapse of Ukraine, the inadmissibility of a direct military clash with the United States and the extreme undesirability of further aggravation of relations with the United States on the factor of Chinese friendship with Russia.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.