• Title/Summary/Keyword: Region Normalization

Search Result 85, Processing Time 0.028 seconds

Development of a Recognition System of Smile Facial Expression for Smile Treatment Training (웃음 치료 훈련을 위한 웃음 표정 인식 시스템 개발)

  • Li, Yu-Jie;Kang, Sun-Kyung;Kim, Young-Un;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.47-55
    • /
    • 2010
  • In this paper, we proposed a recognition system of smile facial expression for smile treatment training. The proposed system detects face candidate regions by using Haar-like features from camera images. After that, it verifies if the detected face candidate region is a face or non-face by using SVM(Support Vector Machine) classification. For the detected face image, it applies illumination normalization based on histogram matching in order to minimize the effect of illumination change. In the facial expression recognition step, it computes facial feature vector by using PCA(Principal Component Analysis) and recognizes smile expression by using a multilayer perceptron artificial network. The proposed system let the user train smile expression by recognizing the user's smile expression in real-time and displaying the amount of smile expression. Experimental result show that the proposed system improve the correct recognition rate by using face region verification based on SVM and using illumination normalization based on histogram matching.

A Novel Method for Hand Posture Recognition Based on Depth Information Descriptor

  • Xu, Wenkai;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.763-774
    • /
    • 2015
  • Hand posture recognition has been a wide region of applications in Human Computer Interaction and Computer Vision for many years. The problem arises mainly due to the high dexterity of hand and self-occlusions created in the limited view of the camera or illumination variations. To remedy these problems, a hand posture recognition method using 3-D point cloud is proposed to explicitly utilize 3-D information from depth maps in this paper. Firstly, hand region is segmented by a set of depth threshold. Next, hand image normalization will be performed to ensure that the extracted feature descriptors are scale and rotation invariant. By robustly coding and pooling 3-D facets, the proposed descriptor can effectively represent the various hand postures. After that, SVM with Gaussian kernel function is used to address the issue of posture recognition. Experimental results based on posture dataset captured by Kinect sensor (from 1 to 10) demonstrate the effectiveness of the proposed approach and the average recognition rate of our method is over 96%.

A Review of the ${Q_{Lg}}^{-1}$ Study of the South Korea (남한의 ${Q_{Lg}}^{-1}$ 연구 리뷰)

  • Chung, Tae-Woong
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.277-285
    • /
    • 2010
  • For regional earthquakes in the Korean Peninsula, the seismic Lg waves have the largest amplitude. Our researches in South Korea found that more reasonable low ${Q_{Lg}}^{-1}$ was obtained as the inter-station distances increase. The other methods such as coda normalization method and multiple lapse time window method also produced that the low ${Q_{Lg}}^{-1}$ is related to the values of seismically inactive region.

Determination of Nitrogen in Fresh and Dry Leaf of Apple by Near Infrared Technology (근적외 분석법을 응용한 사과의 생잎과 건조잎의 질소분석)

  • Zhang, Guang-Cai;Seo, Sang-Hyun;Kang, Yeon-Bok;Han, Xiao-Ri;Park, Woo-Churl
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.259-265
    • /
    • 2004
  • A quicker method was developed for foliar analysis in diagnosis of nitrogen in apple trees based on multivariate calibration procedure using partial least squares regression (PLSR) and principal component regression (PCR) to establish the relationship between reflectance spectra in the near infrared region and nitrogen content of fresh- and dry-leaf. Several spectral pre-processing methods such as smoothing, mean normalization, multiplicative scatter correction (MSC) and derivatives were used to improve the robustness and performance of the calibration models. Norris first derivative with a seven point segment and a gap of six points on MSC gave the best result of partial least squares-1 PLS-1) model for dry-leaf samples with root mean square error of prediction (RMSEP) equal to $0.699g\;kg^{-1}$, and that the Savitzky-Golay first derivate with a seven point convolution and a quadratic polynomial on MSC gave the best results of PLS-1 model for fresh-samples with RMSEP of $1.202g\;kg^{-1}$. The best PCR model was obtained with Savitzky-Golay first derivative using a seven point convolution and a quadratic polynomial on mean normalization for dry leaf samples with RMSEP of $0.553g\;kg^{-1}$, and obtained with the Savitzky-Golay first derivate using a seven point convolution and a quadratic polynomial for fresh samples with RMSEP of $1.047g\;kg^{-1}$. The results indicate that nitrogen can be determined by the near infrared reflectance (NIR) technology for fresh- and dry-leaf of apple.

Development of Recognition Application of Facial Expression for Laughter Theraphy on Smartphone (스마트폰에서 웃음 치료를 위한 표정인식 애플리케이션 개발)

  • Kang, Sun-Kyung;Li, Yu-Jie;Song, Won-Chang;Kim, Young-Un;Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.4
    • /
    • pp.494-503
    • /
    • 2011
  • In this paper, we propose a recognition application of facial expression for laughter theraphy on smartphone. It detects face region by using AdaBoost face detection algorithm from the front camera image of a smartphone. After detecting the face image, it detects the lip region from the detected face image. From the next frame, it doesn't detect the face image but tracks the lip region which were detected in the previous frame by using the three step block matching algorithm. The size of the detected lip image varies according to the distance between camera and user. So, it scales the detected lip image with a fixed size. After that, it minimizes the effect of illumination variation by applying the bilateral symmetry and histogram matching illumination normalization. After that, it computes lip eigen vector by using PCA(Principal Component Analysis) and recognizes laughter expression by using a multilayer perceptron artificial network. The experiment results show that the proposed method could deal with 16.7 frame/s and the proposed illumination normalization method could reduce the variations of illumination better than the existing methods for better recognition performance.

Detection of eye using optimal edge technique and intensity information (눈 영역에 적합한 에지 추출과 밝기값 정보를 이용한 눈 검출)

  • Mun, Won-Ho;Choi, Yeon-Seok;Kim, Cheol-Ki;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.196-199
    • /
    • 2010
  • The human eyes are important facial landmarks for image normalization due to their relatively constant interocular distance. This paper introduces a novel approach for the eye detection task using optimal segmentation method for eye representation. The method consists of three steps: (1)edge extraction method that can be used to accurately extract eye region from the gray-scale face image, (2)extraction of eye region using labeling method, (3)eye localization based on intensity information. Experimental results show that a correct eye detection rate of 98.9% can be achieved on 2408 FERET images with variations in lighting condition and facial expressions.

  • PDF

A Range Dependent Structural HRTF Model for 3-D Sound Generation in Virtual Environments (가상현실 환경에서의 3차원 사운드 생성을 위한 거리 변화에 따른 구조적 머리전달함수 모델)

  • Lee, Young-Han;Kim, Hong-Kook
    • MALSORI
    • /
    • no.59
    • /
    • pp.89-99
    • /
    • 2006
  • This paper proposes a new structural head-related transfer function(HRTF) model to produce sounds in a virtual environment. The proposed HRTF model generates 3-D sounds by using a head model, a pinna model and the proposed distance model for azimuth, elevation, and distance that are three aspects for 3-D sounds, respectively. In particular, the proposed distance model consists of level normalization block distal region model, and proximal region model. To evaluate the performance of the proposed model, we setup an experimental procedure that each listener identifies a distance of 3-D sound sources that are generated by the proposed method with a predefined distance. It is shown from the tests that the proposed model provides an average distance error of $0.13{\sim}0.31$ meter when the sound source is generated as if it is 0.5 meter $\sim$ 2 meters apart from the listeners. This result is comparable to the average distance error of the human listening for the actual sound source.

  • PDF

Contactless Biometric Using Thumb Image (엄지손가락 영상을 이용한 비접촉식 바이오인식)

  • Lim, Naeun;Han, Jae Hyun;Lee, Eui Chul
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.12
    • /
    • pp.671-676
    • /
    • 2016
  • Recently, according to the limelight of Fintech, simple payment using biometric at smartphone is widely used. In this paper, we propose a new contactless biometric method using thumb image without additional sensors unlike previous biometrics such as fingerprint, iris, and vein recognition. In our method, length, width, and skin texture information are used as features. For that, illumination normalization, skin region segmentation, size normalization and alignment procedures are sequentially performed from the captured thumb image. Then, correlation coefficient is calculated for similarity measurement. To analyze recognition accuracy, genuine and imposter matchings are performed. At result, we confirmed the FAR of 1.68% at the FRR of 1.55%. In here, because the distribution of imposter matching is almost normal distribution, our method has the advantage of low FAR. That is, because 0% FAR can be achieved at the FRR of 15%, the proposed method is enough to 1:1 matching for payment verification.

Comparative Study on the Attenuation of P and S Waves in the Crust of the Southeastern Korea (한국 남동부 지각의 P파와 5파 감쇠구조 비교연구)

  • Chung, Tae-Woong
    • Journal of the Korean earth science society
    • /
    • v.22 no.2
    • /
    • pp.112-119
    • /
    • 2001
  • The Yangsan fault in the southeastern Korea has been receiving increasing attention in its seismic activity. In this fault region, by using the extended coda-normalization method for 707 seismograms of local earthquakes, were obtained 0.009f$^{-1.05}$ and 0.004f$^{-0.70}$ for fitting values of Q$_p^{-1}$ and Q$_s^{-1}$, respectively. These results indicate that Q$_p^{-1}$ and Q$_s^{-1}$ in the southeastern Korea is the lowest level in the world although the exponent values agree well with those in the other areas. The low Q-1 is not related to the movement of the Yangsan fault but to the tectonically inactive status like a shield area.

  • PDF

Comparison of Based on Histogram Equalization Techniques by Using Normalization in Thoracic Computed Tomography (흉부 컴퓨터 단층 촬영에서 정규화를 사용한 다양한 히스토그램 평준화 기법을 비교)

  • Lee, Young-Jun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.44 no.5
    • /
    • pp.473-480
    • /
    • 2021
  • This study was purpose to method that applies for improving the image quality in CT and X-ray scan, especially in the lung region. Also, we researched the parameters of the image before and after applying for Histogram Equalization (HE) such as mean, median values in the histogram. These techniques are mainly used for all type of medical images such as for Chest X-ray, Low-Dose Computed Tomography (CT). These are also used to intensify tiny anatomies like vessels, lung nodules, airways and pulmonary fissures. The proposed techniques consist of two main steps using the MATLAB software (R2021a). First, the technique should apply for the process of normalization for improving the basic image more correctly. In the next, the technique actively rearranges the intensity of the image contrast. Second, the Contrast Limited Adaptive Histogram Equalization (CLAHE) method was used for enhancing small details, textures and local contrast of the image. As a result, this paper shows the modern and improved techniques of HE and some advantages of the technique on the traditional HE. Therefore, this paper concludes that various techniques related to the HE can be helpful for many processes, especially image pre-processing for Machine Learning (ML), Deep Learning (DL).