• Title/Summary/Keyword: Region Normalization

Search Result 85, Processing Time 0.029 seconds

Adaptive Optimal Thresholding for the Segmentation of Individual Tooth from CT Images (CT영상에서 개별 치아 분리를 위한 적응 최적 임계화 방안)

  • Heo, Hoon;Chae, Ok-Sam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.163-174
    • /
    • 2004
  • The 3D tooth model in which each tooth can be manipulated individualy is essential component for the orthodontic simulation and implant simulation in dental field. For the reconstruction of such a tooth model, we need an image segmentation algorithm capable of separating individual tooth from neighboring teeth and alveolar bone. In this paper we propose a CT image normalization method and adaptive optimal thresholding algorithm for the segmenation of tooth region in CT image slices. The proposed segmentation algorithm is based on the fact that the shape and intensity of tooth change gradually among CT image slices. It generates temporary boundary of a tooth by using the threshold value estimated in the previous imge slice, and compute histograms for the inner region and the outer region seperated by the temporary boundary. The optimal threshold value generating the finnal tooth region is computed based on these two histogram.

Enhanced Vein Detection Method by Using Image Scaler Based on Poly Phase Filter (Poly Phase Filter 기반의 영상 스케일러를 이용한 개선 된 정맥 영역 추출 방법)

  • Kim, HeeKyung;Lee, Seungmin;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.734-739
    • /
    • 2018
  • Fingerprint recognition and iris recognition, which are one of the biometric methods, are easily influenced by external factors such as sunlight. Recently, finger vein recognition is used as a method utilizing internal features. However, for accurate finger vein recognition, it is important to clearly separate vein and background regions. However, it is difficult to separate the vein region and background region due to the abnormalized illumination, and a method of separating the vein region and the background region after normalized the illumination of the input image has been proposed. In this paper, we proposed a method to enhance the quality improvement and improve the processing time compared to the existing finger vein recognition system binarization and labeling method of the image including the image stretching process based on the existing illumination normalization method.

Real-time Face Detection and Verification Method using PCA and LDA (PCA와 LDA를 이용한 실시간 얼굴 검출 및 검증 기법)

  • 홍은혜;고병철;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.213-223
    • /
    • 2004
  • In this paper, we propose a new face detection method for real-time applications. It is based on the template-matching and appearance-based method. At first, we apply Min-max normalization with histogram equalization to the input image according to the variation of intensity. By applying the PCA transform to both the input image and template, PC components are obtained and they are applied to the LDA transform. Then, we estimate the distances between the input image and template, and we select one region which has the smallest distance. SVM is used for final decision whether the candidate face region is a real face or not. Since we detect a face region not the full region but within the $\pm$12 search window, our method shows a good speed and detection rate. Through the experiments with 6 category input videos, our algorithm shows the better performance than the existing methods that use only the PCA transform. and the PCA and LDA transform.

Recognition of Road Surface Marks and Numbers Using Connected Component Analysis and Size Normalization (연결 성분 분석과 크기 정규화를 이용한 도로 노면 표시와 숫자 인식)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.22-26
    • /
    • 2022
  • This paper proposes a new method for the recognition of road surface marks and numbers. The proposed method designates a region of interest on the road surface without first detecting a lane. The road surface markings are extracted by location and size using a connection component analysis. Distortion due to the perspective effect is minimized by normalizing the size of the road markings. The road surface marking of the connected component is recognized by matching it with the stored road marking templates. The proposed method is implemented using C language in Raspberry Pi 4 system with a camera module for a real-time image processing. The system was fixedly installed in a moving vehicle, and it recorded a video like a vehicle black box. Each frame of the recorded video was extracted, and then the proposed method was tested. The results show that the proposed method is successful for the recognition of road surface marks and numbers.

A Study on Appearance-Based Facial Expression Recognition Using Active Shape Model (Active Shape Model을 이용한 외형기반 얼굴표정인식에 관한 연구)

  • Kim, Dong-Ju;Shin, Jeong-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • This paper introduces an appearance-based facial expression recognition method using ASM landmarks which is used to acquire a detailed face region. In particular, EHMM-based algorithm and SVM classifier with histogram feature are employed to appearance-based facial expression recognition, and performance evaluation of proposed method was performed with CK and JAFFE facial expression database. In addition, performance comparison was achieved through comparison with distance-based face normalization method and a geometric feature-based facial expression approach which employed geometrical features of ASM landmarks and SVM algorithm. As a result, the proposed method using ASM-based face normalization showed performance improvements of 6.39% and 7.98% compared to previous distance-based face normalization method for CK database and JAFFE database, respectively. Also, the proposed method showed higher performance compared to geometric feature-based facial expression approach, and we confirmed an effectiveness of proposed method.

Image Enhancement for Western Epigraphy Using Local Statistics (국부 통계치를 활용한 서양금석문 영상향상)

  • Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.80-87
    • /
    • 2007
  • In this paper, we investigate an enhancement method for Western epigraphic images, which is based on local statistics. Image data is partitioned into two regions, background and information. Statistical and functional analyses are proceeded for image modeling. The Western epigraphic images, for the most part, have shown the Gaussian distribution. It is clarified that each region can be differentiated statistically. The local normalization process algorithm is designed on this model. The parameter is extracted and it‘s properties are verified with the size of moving window. The spatial gray-level distribution is modified and regions are differentiated by adjusting parameter and the size of moving window. Local statistics are utilized for realization of the enhancement, so that difference between regions can be enhanced and noise or speckles of region can be smoothed. Experimental results are presented to show the superiority of the proposed algorithm over the conventional methods.

Hybrid Affine Registration Using Intensity Similarity and Feature Similarity for Pathology Detection

  • June-Sik Kim;Ho-Sung Kim;Jong-Min Lee;Jae-Seok Kim;In-Young Kim;Sun I. Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.39-47
    • /
    • 2002
  • The objective of this study is to provide a Precise form of spatial normalization with affine transformation. The quantitative comparison of the brain architecture across different subjects requires a common coordinate system. For the common coordinate system, not only global brain but also a local region of interest should be spatially normalized. Registration using mutual information generally matches the whose brain well. However. a region of interest may not be normalized compared to the feature-based methods with the landmarks. The hybrid method of this Paper utilizes feature information of the local region as well as intensity similarity. Central gray nuclei of a brain including copus callosum, which is used for feature in Schizophrenia detection, is appropriately normalized by the hybrid method. In the results section. our method is compared with mutual information only method and Talairach mapping with schizophrenia Patients. and is shown how it accurately normalizes feature .

Extraction of Facial Region and features Using Snakes in Color Image (Snakes 알고리즘을 이용한 얼굴영역 및 특징추출)

  • 김지희;민경필;전준철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.496-498
    • /
    • 2001
  • Snake 모델(active contour model)은 초기값을 설정해주면 자동으로 임의의 물체의 윤곽을 찾아내는 알고리즘으로 영상에서 특정 영역을 분할하여 할 때 많이 이용되고 있다. 본 논문에서는 칼라 영상에서 얼굴과 얼굴의 특징점을 찾는 방법으로 이 알고리즘을 적용한다. 특히, 주어진 영상의 RGB 값을 정규화(normalization) 해주는 전처리 과정을 통해 얼굴의 특징점 후보 영역을 얻어내는 초기 값을 설정해주어야 하는 과정을 생략해주고 보다 정확한 값을 얻을 수 있도록 구현한다. RGB 값을 이용한 정규화 과정을 적용한 방법과 적용하지 않은 방법을 구현한 결과를 비교해줌으로써, 정규화 과정을 거친 방법의 성능이 더 우수함을 보여준다.

  • PDF

3D Face Alignment and Normalization Based on Feature Detection Using Active Shape Models : Quantitative Analysis on Aligning Process (ASMs을 이용한 특징점 추출에 기반한 3D 얼굴데이터의 정렬 및 정규화 : 정렬 과정에 대한 정량적 분석)

  • Shin, Dong-Won;Park, Sang-Jun;Ko, Jae-Pil
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.403-411
    • /
    • 2008
  • The alignment of facial images is crucial for 2D face recognition. This is the same to facial meshes for 3D face recognition. Most of the 3D face recognition methods refer to 3D alignment but do not describe their approaches in details. In this paper, we focus on describing an automatic 3D alignment in viewpoint of quantitative analysis. This paper presents a framework of 3D face alignment and normalization based on feature points obtained by Active Shape Models (ASMs). The positions of eyes and mouth can give possibility of aligning the 3D face exactly in three-dimension space. The rotational transform on each axis is defined with respect to the reference position. In aligning process, the rotational transform converts an input 3D faces with large pose variations to the reference frontal view. The part of face is flopped from the aligned face using the sphere region centered at the nose tip of 3D face. The cropped face is shifted and brought into the frame with specified size for normalizing. Subsequently, the interpolation is carried to the face for sampling at equal interval and filling holes. The color interpolation is also carried at the same interval. The outputs are normalized 2D and 3D face which can be used for face recognition. Finally, we carry two sets of experiments to measure aligning errors and evaluate the performance of suggested process.

(Searching Effective Network Parameters to Construct Convolutional Neural Networks for Object Detection) (물체 검출 컨벌루션 신경망 설계를 위한 효과적인 네트워크 파라미터 추출)

  • Kim, Nuri;Lee, Donghoon;Oh, Songhwai
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.668-673
    • /
    • 2017
  • Deep neural networks have shown remarkable performance in various fields of pattern recognition such as voice recognition, image recognition and object detection. However, underlying mechanisms of the network have not been fully revealed. In this paper, we focused on empirical analysis of the network parameters. The Faster R-CNN(region-based convolutional neural network) was used as a baseline network of our work and three important parameters were analyzed: the dropout ratio which prevents the overfitting of the neural network, the size of the anchor boxes and the activation function. We also compared the performance of dropout and batch normalization. The network performed favorably when the dropout ratio was 0.3 and the size of the anchor box had not shown notable relation to the performance of the network. The result showed that batch normalization can't entirely substitute the dropout method. The used leaky ReLU(rectified linear unit) with a negative domain slope of 0.02 showed comparably good performance.