• Title/Summary/Keyword: Regenerative-starting

Search Result 16, Processing Time 0.024 seconds

A Scheme to Set up Starting Voltage of Regenerative Inverter (회생용 인버터의 동작개시 전압 선정을 위한 현장시험 방안)

  • Kim, Joo-Rak;Jang, Dong-Uk;Han, Moon-Seob;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.264-266
    • /
    • 2008
  • DC transit system has been adopted in the metropolitan area, Korea since 1974. EMU in this system always reiterates that acceleration and retardation. When EMU decelerates using electric breaking, regenerative power occurs. Regenerative power can be consumed in vicinity EMU on the same line or in resistor. If DC transit system has inverter for reusing regenerative power, Energy efficiency in DC transit system will be increased. This paper present a scheme to set up the starting voltage for the developed inverter and its field test result.

  • PDF

Analysis of Utilizing Regenerative Energy in Railway System through a DC Power Supply Simulation (DC 급전시뮬레이션을 통한 도시철도 회생에너지 활용 분석)

  • Shin, Seungkwon;Jung, Hosung;Kim, Hyungchul;Park, Jongyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1479-1484
    • /
    • 2014
  • This paper deals with regenerative energy in railway system which one of the largest customer in terms of load capability. Unlike the other loads of power system, loads of railway systems change in time and space. It has a characteristic amount of generating regenerative energy by frequent starting and braking in railway system. Therefore, it is expected higher utilization in railway system than the other systems. The purpose of DC power supply simulation is analyzing backed energy, regenerative energy by each railway vehicle and substation. In this paper, regenerative energy utilization are analyzed using DC power supply simulation and it is performed changing major influence on the design such as the number of installing absorber, internal resistance value, no-load voltage value at substation or operating parameters at regenerative energy utilization. After simulating, results are compared and analyzed.

A Study on Practical Problem Solving for Speed Ripple Rejection in TBM with Regenerative Startup (TBM 회생기동법에서의 속도리플 제거를 위한 실제적 문제 해결에 관한 연구)

  • Kim, TaeKue;Seo, JeongWon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.6
    • /
    • pp.35-42
    • /
    • 2019
  • In this paper, we analyze the practical problems of the regenerative start method proposed to improve the starting characteristics of the TBM(Tunnel boring machine)system and propose a solution. In order to solve the speed ripple problem in the previous research results, we first analyze the problems occurring in the system and propose a method to compensate for them. By applying the improved method to the actual system, we compared the results with the conventional system and verified the effect of the proposed method.

A Study on Starting Characteristic and Improvement for High Power Motor with Tunnel Boring Machine (TBM용 대용량 전동기의 기동 특성 및 개선 관한 연구)

  • Kim, Tae-Kue;An, Joon-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.44-51
    • /
    • 2019
  • Tunnel Boring Machine's Technology has depends mostly on imports, currently domestic technology development was proceeding. There are many technologies in this field, above all, the large-capacity motor drive technology required for excavation is one of the core technologies. In particular, when several large motors are simultaneously starting, there are many problems due to a large starting current at that time, and it is difficult to design and operate a power receiving facility. In this paper, A method of reducing the starting current by using the regenerative power generated by the deceleration of the motor has been studied. To verify this proposal, we designed the induction motor controller using CAE based power simulation tool and verified the results of the proposed method by applying the reduced model. As a result, it is possible to reduce the maximum starting current and shorten the start-up time. Moreover, even if several motors are connected to one bank, it is proved that the method can be efficiently operated by using the sequential braking / starting sequence. In the case of a power system in which a large capacity electric motor such as a tunnel excavation system is driven, the results of this study are expected to be a stable and effective method for solving the start-up current problem and designing the power receiving facility.

Development of a Novel Charging Algorithm for On-board ESS in DC Train through Weight Modification

  • Jung, Byungdoo;Kim, Hyun;Kang, Heechan;Lee, Hansang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1795-1804
    • /
    • 2014
  • Owing to the reduction in the peak power of a DC railway subsystem, many studies on energy storage system (ESS) applications have received attention. Each application focuses on improving the efficiency and addressing regulation issues by utilizing the huge regenerative energy generated by braking-phase vehicles. The ESS applications are widely divided into installation on a vehicle or in a substation, depending on the target system characteristics. As the main purpose of the ESS application is to reduce the peak power of starting-phase vehicles, an optimized ESS utilization can be achieved by the operating at the highest peak power section. However, the weight of an entire vehicle, including those of the passengers, continuously changes during operation; thus, considering the total power consumption and the discharging point is difficult. As a contribution to the various storage device algorithms, this study deals with ESS on board vehicles and introduces an ESS operating plan for peak-power reduction by investigating the weight of a train on a real-time basis. This process is performed using a train-performance simulator, and the simulation accuracy can be increased because the weight in each phase can be adopted in the simulation.

Performance Evaluation for Hydraulic Type Energy Regenerative System (유압식 에너지 회생시스템의 성능평가)

  • Jung, Dong-Soo;Kim, Hyong-Eui;Kang, E-Sok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.136-144
    • /
    • 2006
  • Vehicles usually have 3 types of speed pattern like acceleration, travel, and deceleration. It requires much driving energy from engine while accelerating, preserves much kinetic energy by inertia moment at travel speed, and releases the kinetic energy to the air while decelerating by the break system. If we accumulate the kinetic energy while decelerating and reuse the energy at the accelerating stage, then it can elevate the fuel efficiency, reduce the emission and improve the motive power. This paper proposes a hydraulic type energy regenerative system which converts the kinetic energy into hydraulic energy at the stage of deceleration and reuses it at the starting and accelerating stage of vehicles. The test equipment which has the field condition of city bus was prepared to evaluate the performance for energy regeneration. The test results show that both energy regeneration efficiency and fuel efficiency are improved significantly and the emission is reduced notably.

Review on Kerosene Fuel and Coking (케로신 연료 및 코킹에 대한 검토)

  • Lee, Junseo;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.81-124
    • /
    • 2020
  • In liquid oxygen/kerosene liquid rocket engines, kerosene is not only a propellant but also plays a role as a coolant to protect the combustion chamber wall from 3,000 K or more combustion gas. Since kerosene is exposed to high temperature passing through cooling channels, it may undergo heat-related chemical reactions leading to precipitation of carbon-rich solids. Such kerosene's thermal and fluidic characteristic test data are essential for the regeneratively cooled combustion chamber design. In this paper, we investigated foreign studies related to regenerative cooling channel and kerosene. Starting with general information on hydrocarbon fuels including kerosene, we attempted to systematically organize sedimentary phenomena on cooling channel walls, their causes/research results, coking test equipments/prevention methods, etc.

Fault Diagnosis Method of Permanent Magnet Synchronous Motor for Electrical Vehicle

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.413-420
    • /
    • 2016
  • The permanent magnet synchronous motor has high efficiency driving performance and high power density output characteristics compared with other motors. In addition, it has good regenerative operation characteristics during braking and deceleration driving condition. For this reason, permanent magnet synchronous motor is generally applied as a power train motor for electrical vehicle. In permanent magnet synchronous motor, the most probable causes of fault are demagnetization of rotor's permanent magnet and short of stator winding turn. Therefore, the demagnetization fault of permanent magnet and turn fault of stator winding should be detected quickly to reduce the risk of accident and to prevent the progress of breakdown of power train system. In this paper, the fault diagnosis method using high frequency low voltage injection was suggested to diagnose the demagnetization fault of rotor permanent magnet and the turn fault of stator winding. The proposed fault diagnosis method can be used to check the faults of permanent magnet synchronous motor during system check-up process at vehicle starting and idling stop mode. The feasibility and usefulness of the proposed method were verified by the finite element analysis.

A Study on the Power Conditioning System for the Fuel Cell Powered Off-Road Vehicle (연료전지를 이용하는 비도로용 자동차를 위한 전력변환시스템에 관한 연구)

  • Kang, Ho-Hyun;Kim, Wang-Rae;Choi, Woo-Jin;Jeon, Hee-Jong
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.343-346
    • /
    • 2005
  • In this paper a power conditioning system suitable for the fuel cell powered off-road vehicle is proposed. The proposed system employs a Proton Exchange Membrane Fuel Cell stack combined with boost converter, a super capacitor module combined with hi-directional buck-boost converter, a 4-quadrant DC chopper and a permanent magnet DC motor. The momentary overload condition occurring during the motor starting is handled by the energy stored in the supercapacitor module. Also, the regenerative energy can be stored in the supercapacitor module by operating the system in either buck or boost mode. This capability gives the system designer the higher flexibility in designing the system and assures the lower cost of the system. The validity and feasibility of the proposed system is proven by the computer simulation.

  • PDF

Operating Method of 3 Phase Voltage type PWM Converter for Unbalanced Voltage with Leakage Transformer (누설변압기가 부착된 전원 불평형 3상 전압형 PWM 컨버터 운전법)

  • Chun, Ji-Yong;Kim, Young-Chun;Cho, Yu-Hwan;Lee, Keun-Hong
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.125-127
    • /
    • 2005
  • In this paper, the control algorithm of DC source device for inverter starting is proposed and the control method for compensating unbalance system source on operating time in the voltage type PWM converter with driving and regenerative faculty is suggested. The maintaining way of balancing condition for converter of AC source is used the compensating unbalanced status by current control loop. Because it is possible that the unbalanced System control is used to leakage transformer not equaled reactance by each phase in rectifier system, the proposed H/W and control algorithm of rectifier system is contributed to minimize of device and rising efficiency.

  • PDF