• Title/Summary/Keyword: Regenerative type

Search Result 148, Processing Time 0.032 seconds

Structural Design of Liquid Rocket Thrust Chamber Regenerative Cooling Channel (액체로켓 연소기 재생냉각 채널 구조설계)

  • Ryu Chul-Sung;Chung Yong Hyun;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.134-138
    • /
    • 2005
  • The structural analysis and water pressure test of regenerative liquid rocket thrust chamber cooling channel specimens are performed at room temperature. material properties of copper alloy are obtained by uniaxial tension test at room temperature and used of elastic-plastic structural analysis. The plate type of cooling channel specimen are manufactured and performed water pressure test in order to confirm the analysis results. The differences between results of elastic-plastic analysis and that of water pressure test of cooling channel specimen are small and find that manufacturing process affect the structural stability of cooling channel very much because cooling channel thickness is small

  • PDF

Development of the active magnetic regenerative refrigerator for room temperature application (상온 능동형 자기 재생 냉동기의 개발)

  • Park, I.;Kim, Y.;Jeong, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.60-64
    • /
    • 2012
  • In this paper, an investigation of a room temperature active magnetic regenerative refrigerator is carried out. Experimental apparatus includes two active magnetic regenerators containing 186 g of Gd spheres. Four E-type thermocouples are installed inside the Active magnetic regenerator(AMR) to observe the instantaneous temperature variation of AMR. Both warm and cold heat exchangers are designed for large temperature span. The cold heat exchanger, which separates the two AMRs, employs a copper tube with length of 80 mm and diameter of 6.35 mm. In order to minimize dead volume between the warm heat exchanger and AMRs, the warm heat exchangers are located close to the AMRs. The deionized water is used as a heat transfer fluid, and maximum 1.4 T magnetic field is supplied by Halbach array of permanent magnets. The AMR plate, which contains the warm and the cold heat exchangers and the AMRs, has reciprocating motion using a linear actuator and each AMR is alternatively magnetized and demagnetized by a Halbach array of permanent magnet. Since the gap of the Halbach array of permanent magnets is 25 mm and two warm heat exchangers have the motion through it, a compact printed circuit heat exchanger (PCHE) is used as a warm heat exchanger. A maximum no-load temperature span of 26.8 K and a maximum cooling power of 33 W are obtained from the fabricated Active Magnetic Regenerative Refrigerator (AMRR).

Properties of Spontaneous Activity in Gastric Smooth Muscle

  • Suzuki, H.;Yamamoto, Y.;Hirst, G.D.S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.119-125
    • /
    • 1999
  • Mammalian gastric smooth muscles generate spontaneous rhythmic contractions which are associated with slow oscillatory potentials (slow waves) and spike potentials. Spike potentials are blocked by organic $Ca^{2+}-antagonists,$ indicating that these result from the activation of L-type $Ca^{2+}-channel.$ However, the cellular mechanisms underlying the generation of slow wave remain unclear. Slow waves are insensitive to $Ca^{2+}-antagonists$ but are blocked by metabolic inhibitors or low temperature. Recently it has been suggested that Interstitial Cells of Cajal (ICC) serve as pacemaker cells and a slow wave reflects the coordinated behavior of both ICC and smooth muscle cells. Small segments of circular smooth muscle isolated from antrum of the guinea-pig stomach generated two types of electrical events; irregular small amplitude (1 to 7 mV) of transient depolarization and larger amplitude (20 to 30 mV) of slow depolarization (regenerative potential). Transient depolarization occurred irregularly and membrane depolarization increased their frequency. Regenerative potentials were generated rhythmically and appeared to result from summed transient depolarizations. Spike potentials, sensitive to nifedipine, were generated on the peaks of regenerative potentials. Depolarization of the membrane evoked regenerative potentials with long latencies (1 to 2 s). These potentials had long partial refractory periods (15 to 20 s). They were inhibited by low concentrations of caffeine, perhaps reflecting either depletion of $Ca^{2+}$ from SR or inhibition of InsP3 receptors, by buffering $Ca^{2+}$ to low levels with BAPTA or by depleting $Ca^{2+}$ from SR with CPA. They persisted in the presence of $Ca^{2+}-sensitive$ $Cl^--channel$ blockers, niflumic acid and DIDS or $Co^{2+},$ a non selective $Ca^{2+}-channel$ blocker. These results suggest that spontaneous activity of gastric smooth muscle results from $Ca^{2+}$ release from SR, followed by activation of $Ca^{2+}-dependent$ ion channels other than $Cl^-$ channels, with the release of $Ca^{2+}$ from SR being triggered by membrane depolarization.

  • PDF

Performance Evaluation for Hydraulic Type Energy Regenerative System (유압식 에너지 회생시스템의 성능평가)

  • Jung, Dong-Soo;Kim, Hyong-Eui;Kang, E-Sok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.136-144
    • /
    • 2006
  • Vehicles usually have 3 types of speed pattern like acceleration, travel, and deceleration. It requires much driving energy from engine while accelerating, preserves much kinetic energy by inertia moment at travel speed, and releases the kinetic energy to the air while decelerating by the break system. If we accumulate the kinetic energy while decelerating and reuse the energy at the accelerating stage, then it can elevate the fuel efficiency, reduce the emission and improve the motive power. This paper proposes a hydraulic type energy regenerative system which converts the kinetic energy into hydraulic energy at the stage of deceleration and reuses it at the starting and accelerating stage of vehicles. The test equipment which has the field condition of city bus was prepared to evaluate the performance for energy regeneration. The test results show that both energy regeneration efficiency and fuel efficiency are improved significantly and the emission is reduced notably.

Spot the difference: Solving the puzzle of hidden pictures in the lizard genome for identification of regeneration factors

  • Chung, Jin Woong
    • BMB Reports
    • /
    • v.49 no.5
    • /
    • pp.249-254
    • /
    • 2016
  • All living things share some common life processes, such as growth and reproduction, and have the ability to respond to their environment. However, each type of organism has its own specialized way of managing biological events. Genetic sequences determine phenotypic and physiological traits. Based on genetic information, comparative genomics has been used to delineate the differences and similarities between various genomes, and significant progress has been made in understanding regenerative biology by comparing the genomes of a variety of lower animal models of regeneration, such as planaria, zebra fish, and newts. However, the genome of lizards has been relatively ignored until recently, even though lizards have been studied as an excellent amniote model of tissue regeneration. Very recently, whole genome sequences of lizards have been uncovered, and several attempts have been made to find regeneration factors based on genetic information. In this article, recent advances in comparative analysis of the lizard genome are introduced, and their biological implications and putative applications for regenerative medicine and stem cell biology are discussed.

Modelling Voltage Variation at DC Railway Traction Substation using Recursive Least Square Estimation (순환최소자승법을 이용한 직류도시철도 변전소의 가선전압변동 모델링)

  • Bae, Chang-Han
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.534-539
    • /
    • 2015
  • The DC overhead line voltage of an electric railway substation swings depending on the accelerating and regenerative-braking energy of trains, and it deteriorates the energy quality of the electric facility in the DC railway substation and restricts the powering and braking performance of subway trains. Recently, an energy storage system or a regenerative inverter has been introduced into railway traction substations to diminish both the variance of the overhead line voltage and the peak power consumption. In this study, the variance of the overhead line voltage in a DC railway substation is modelled by RC parallel circuits in each feeder, and the RC parameters are estimated using the recursive least mean square (RLMS) scheme. The forgetting factor values for the RLMS are selected using simulated annealing optimization, and the modelling scheme of the overhead line voltage variation is evaluated through raw data measured in a downtown railway substation.

Brief Retrospect on the Use of Photobiomodulation (PBM) Therapy for Augmented Bone Regeneration (ABR)

  • Padalhin, Andrew Reyes
    • Medical Lasers
    • /
    • v.10 no.1
    • /
    • pp.15-21
    • /
    • 2021
  • As technology advances at a rapid rate, innovations in regenerative medicine will eventually include the use of energy-based therapeutics, such as low intensity-pulsed ultrasound stimulation (LIPUs), pulsed electromagnetic field stimulation (PMFs), and low-level laser/light therapy (LLLt) or photobiomodulation therapy (PBMt). Among these treatments, LLLt/PBMt attracted significant attention by the turn of the century, as evidenced by the numerous publications compared to LIPUs and PMFs, particularly for augmented bone regeneration (ABR). This is a testament of how the maturation of technology and scientific knowledge leads to latent compounded applications, even when the value of a technique is reliant on empirical data. This article reviews some of the notable investigations using LLLt/PBMt for bone regeneration published in the past decade, focusing on how this type of therapy has been utilized together with the existing regenerative medicine landscape.

Retention of BioAggregate and MTA as coronal plugs after intracanal medication for regenerative endodontic procedures: an ex vivo study

  • Amin, Suzan Abdul Wanees;Gawdat, Shaimaa Ismail
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.3
    • /
    • pp.18.1-18.12
    • /
    • 2018
  • Objectives: This study compared the retention of BioAggregate (BA; Innovative BioCeramix) and mineral trioxide aggregate (MTA; Angelus) as coronal plugs after applying different intracanal medications (ICMs) used in regenerative endodontic. Materials and Methods: One-hundred human maxillary central incisors were used. The canals were enlarged to a diameter of 1.7 mm. Specimens were divided into 5 groups (n = 20) according to the ICM used: calcium hydroxide (CH), 2% chlorhexidine (CHX), triple-antibiotic paste (TAP), double-antibiotic paste (DAP), and no ICM (control; CON). After 3 weeks of application, ICMs were removed and BA or MTA were placed as the plug material (n = 10). The push-out bond strength and the mode of failure were assessed. The data were analyzed using 2-way analysis of variance, the Tukey's test, and the ${\chi}^2$ test; p values < 0.05 indicated statistical significance. Results: The type of ICM and the type of plug material significantly affected bond strength (p < 0.01). Regardless of the type of ICM, BA showed a lower bond strength than MTA (p < 0.05). For MTA, CH showed a higher bond strength than CON, TAP and DAP; CHX showed a higher bond strength than DAP (p < 0.01). For BA, CH showed a higher bond strength than DAP (p < 0.05). The mode of failure was predominantly cohesive for BA (p < 0.05). Conclusions: MTA may show better retention than BA. The mode of bond failure with BA can be predominantly cohesive. BA retention may be less affected by ICM type than MTA retention.

Current Status of Stem Cell Treatment for Type I Diabetes Mellitus

  • Kakkar, Anupama;Sorout, Ashima;Tiwari, Mahak;Shrivastava, Pallavi;Meena, Poonam;Kumar Saraswat, Sumit;Srivastava, Supriya;Datt, Rajan;Pandey, Siddharth
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.699-709
    • /
    • 2018
  • BACKGROUND: Diabetes mellitus is a major health concern in current scenario which has been found to affect people of almost all ages. The disease has huge impact on global health; therefore, alternate methods apart from insulin injection are being explored to cure diabetes. Therefore, this review mainly focuses on the current status and therapeutic potential of stem cells mainly mesenchymal stem cells (MSCs) for Type 1 diabetes mellitus in preclinical animal models as well as humans. METHODS: Current treatment for Type 1 diabetes mellitus mainly includes use of insulin which has its own limitations and also the underlying mechanism of diseases is still not explored. Therefore, alternate methods to cure diabetes are being explored. Stem cells are being investigated as an alternative therapy for treatment of various diseases including diabetes. Few preclinical studies have also been conducted using undifferentiated MSCs as well as in vitro MSCs differentiated into ${\beta}$ islet cells. RESULTS: These stem cell transplant studies have highlighted the benefits of MSCs, which have shown promising results. Few human trials using stem cells have also affirmed the potential of these cells in alleviating the symptoms. CONCLUSION: Stem cell transplantation may prove to be a safe and effective treatment for patients with Type 1 diabetes mellitus.